SFS

Sodium Formaldehyde Sulfoxylate (SFS)


Custom Grinds Size

While other suppliers simply sell Sodium Formaldehyde Sulfoxylate in 2 or 3 grind sizes, packaged in 250 lb. drums, Royce manufactures and packages S. F. S. in any particle size our customer requires. Besides 250 lb. drums, we provide custom ground material in bulk bags, 50 lb. bags, 50 lb. kegs or any other package to the exact weight specified. New Liquid

Furthermore, we are the only supplier of a stabilized liquid. This product offers maximum consistency and ease of handling. It is supplied in bulk tank wagons, semi-bulk totes, 55 gallon drums or any custom container our customers need.

This product has application for Rubber, Polymers & Plastic, Textiles, Adhesives, Paints & Coatings and Other Markets


Sodium Hydrosulfite (SHS)


Sodium hydrosulfite is a versatile chemical that's used in the manufacture of a variety of products we all use every day, from photographic film to wine; from fine writing papers to leather goods; from colored fabrics to metal recovery.

While the applications for this chemical workhorse are as vast and as varied as the industries that use it, in most cases, sodium hydrosulfite performs one of the following three roles:


As a reducing agent, hydrosulfite chemically reduces other components by donating an electron or electrons As a sulfonating agent, hydrosulfite adds sulfur to another chemical compound As a cation source, hydrosulfite adds a cation, or sodium, to a product system Sodium hydrosulfite is the common commercial name for products containing sodium dithionite, Na2S2O4, as the active ingredient.

This product has application for Textiles, Wood, Pulp and Paper, Precious Metal Recovery, Water treatment and Leather


Zinc Formaldehyde Sulfoxylate (ZFS)

This product has application for textiles in stripping and discharge printing. ZFS is used as stripping and discharge agent in polyester, nylon and other synthetic fibers.


Speciality Reducing Chemicals


1.HAS & Blends 


HAS is a Powdered Reductive Bleach that is more stable than Hydrosulfite and FAS. HAS is a more stable reducing agent than sodium hydrosulfite which can be used alone to bleach, or in many cases, it can also enhance hydro’s performance in several applications.

Many HAS products are so stable that Hazardous labeling and special handling are not required. HAS is also offered as an easy to handle liquid (HydroBoost) which is stable for up to one year.

This product has application for Wood, Pulp, Paper and Textiles


2.HydroBoost 


HydroBoost is a Liquid product used to boost Hydrosulfite’s reductive power in bleaching and de-coloring applications. HydroBoost can stand alone and/or be used in totes (stable for up to one year) in applications for mills who don’t want to install special Liquid Hydrosulfite equipment or who only want to bleach reductively on occasion.

This product has application for Wood, Pulp and Paper


3.Redox TY 


Redox TY is an excellent waste water management ingredient to Coil Coating Industries in their water treatment plants. Redox TY is a step ahead of Sodium Metabisulfite.

This product has application for Waste Water Treatment


4.Royce Clear SL 


Royceclear SL is an odorless liquid used in clearing all substrates to improve crockfastness and washfastness. This product has a large stable pH and temperature range, and can be effective in all dyeing processes.

This product has application for Textiles


5.Royce Clear SP 


Royce clear SP is a strong, nonflammable powdered clearing agent that can be effective in all dyeing processes. This product can be used on all substrates and dye classes to improve crockfastness and washfastness in a large stable pH and temperature range.

This product has application for Textiles


6.RoyceLite 


RoyceLite is a revolutionary new bleaching and clearing agent available in a variety of chemical strengths. This product has application for Textiles


'Textile_auxiliary' 카테고리의 다른 글

업체-신나까무라  (0) 2016.07.09
Maximizing hiding power with TiO2  (0) 2016.01.30
Opacity and tinting strength  (0) 2016.01.30
Waterborn 폴리우레탄  (0) 2015.12.12
Substitute products for urea  (0) 2015.12.11
Posted by 겨울소나기
  • 신나까무라 일본 섬유 조제 업체, acrylic acid ester monomers & oligomer 생산자

'Textile_auxiliary' 카테고리의 다른 글

SFS  (0) 2016.09.09
Maximizing hiding power with TiO2  (0) 2016.01.30
Opacity and tinting strength  (0) 2016.01.30
Waterborn 폴리우레탄  (0) 2015.12.12
Substitute products for urea  (0) 2015.12.11
Posted by 겨울소나기

Maximizing hiding power with TiO2


The main characteristics of TiO2 that influence hiding power are:

  • High refractive index
  • Optimized particle size

To achieve the full hiding power potential of TiO2 in coatings, the TiO2 must:

  • be well dispersed initially and
  • avoid particle re-agglomeration throughout coating production, storage, application and drying. Low hiding power in a coating can be caused by:

  • Inefficient Dispersion or Deagglomeration

  • Pigment Flocculation

Chemours™ TiO2 products are designed to facilitate easy dispersion and to be compatible with other coating components that might induce flocculation or re-agglomeration of the TiO2 particles.

For more information on how to achieve and maintain TiO2 dispersion in coatings, please refer to section Enhancing TiO2 dispersion performance.

Hiding Power is an optical property used to describe the light-scattering efficiency of a white pigment. The hiding power of a paint measures its ability to obscure a background of contrasting color. White pigments scatter incident visible light at all wavelengths whereas colored pigments absorb incident visible light at characteristic wavelengths.





'Textile_auxiliary' 카테고리의 다른 글

SFS  (0) 2016.09.09
업체-신나까무라  (0) 2016.07.09
Opacity and tinting strength  (0) 2016.01.30
Waterborn 폴리우레탄  (0) 2015.12.12
Substitute products for urea  (0) 2015.12.11
Posted by 겨울소나기

The primary control of opacity and brightness in white paint films depends on the scattering of light. TiO2 is unique because it efficiently scatters visible light, thereby imparting whiteness, brightness and opacity when incorporated into a coating.

Curves in the chart below derived from theoretical considerations in highly dilute systems show the relative scattering power of rutile TiO2 for blue, green and red light as a function of particle size. At about 0.2 microns, the sum of light scattered at all wavelengths is maximized. When the particle size is increased to between 0.25 and 0.30 microns, the scattering of blue light decreases rapidly, but the scattering of green and red is relatively unchanged; however, at 0.15 microns, the diameter corresponding to maximum scattering of blue light, light scattering in the red and green regions drops markedly.

Figure 1: Relative Scattering Power of Rutile TiO2 vs. Particle Size 

In an ideal white film that is pigmented to complete hiding, changing pigment particle size has no effect on color since all the light striking the film is completely scattered. When a pigment such as carbon black is added to the white formula, red light with the longer path length now has a greater chance to be absorbed. As a consequence, the reflected hue appears bluer. Thus, in a paint film containing some light-absorbing matter, decreasing TiO2 particle size will increase blueness. This phenomenon is called undertone.

Color and undertone are sometimes confused. It is possible for a paint containing blue undertone TiO2 to have a yellow color because of one of the undesirable effects listed below:

  • Contamination - including abraded processing equipment, usually resulting from problems during the dispersion process.

  • Colored products of reactions of TiO2 with other paint ingredients such as phenolics, strong reducing agents, etc. Blue, purple or gray discoloration in oxygen-impermeable films exposed to ultraviolet radiation.

  • Excessive heat exposure - vehicle discoloration.

  • Inadequate hiding - show-through of substrate.


'Textile_auxiliary' 카테고리의 다른 글

업체-신나까무라  (0) 2016.07.09
Maximizing hiding power with TiO2  (0) 2016.01.30
Waterborn 폴리우레탄  (0) 2015.12.12
Substitute products for urea  (0) 2015.12.11
특허로보는기술_Printing process  (0) 2015.12.11
Posted by 겨울소나기

Waterborn 폴리우레탄은 새로운 용어가 아닙니다. 수용성 과 수분산성 폴리우레탄을 광범위하게 아우르는 폴리우레탄 수지를 부르는 용어입니다. 수성 우레탄, 수용성 폴리우레탄, 수분산성 폴리우레탄, . . . 등으로 불려집니다. 최근들어 선진국 그룹에서 진행하고 있는 다양한 환경 규제 및 인체 유해성에 관한 세밀한 규제 등이 국내에서도 급속도로 진행될 뿐만아니라 국내 법체계 자체를 변경하면서 강화하고 있는 추세입니다.

화평법, 화관법의 제정이 이에 해당됩니다. 수십년간 유지되어 오던 환경관련 법규를 대대적으로 정비하면서 근본적으로 진구환경 및 인테 유해성에 대한 관범위한 안정성을 확보하기 위해 선진국 수준의 변화를 가하고 있습니다. 이에 대응하기 위해서 화학제품을 제조하는 회사들은 엄청난 비용과 시간등 투자를 하지 않으면 안됩니다.

이런 와중에서도 이에 대응할수 있는 다양한 기술및 제품을 이미 보유한 업체들이 매우 많습니다. 앞으로 저희는 관련업계에서 필요한 경우, 이에 즉시 대응할 수 있는 기술 및 이를 적용한 제품들을 준비하고 있습니다. 이를 소개하면 다음의 것입니다.

  1. 요소대체품, HANTEX U-Free
  2. 넌포르말린 타입의 아크릴 바인더, HanEla ECA-1000 및 그 시리즈들
  3. 친환경 폴리에스테르 리플 가공제
  4. 친환경 듀드롭 가공제
  5. 용제 미함유 각종 우레탄 바인더
  6. 열반응형 면 리플 바인더

오늘은 이중에서도 광범위하게 적용되는 수분산 폴리우레탄에 대한 특징을 소개해 봅니다.

수분산 폴리우레탄수지(PUD) Poly Urethane Dispersion

  • 친환경 소재인 수분산 폴리우레탄의 의류용 제품 상용화 확립
  • Non-Formaldehide 제품 실현
  • 유럽기준의 Oeko-TEX Standard 100 기준제품 실현
  • 유성용제(TOL. MEK, DMF) 대신 물 사용

제품특성

  • 촉감이 부드럽고과 탄성회복력이 우수하다.
  • 초크마크 현상이 없어 봉제시 바늘자국이 발생하지 않는다.
  • 끈적거리 현상이 없이 표면 평활성이 우수하다.

우수한 성능

  • 방수성 우수
  • 투습성 우수
  • 세탁내구성
  • 드라이크리닝성 우수
  • 인열강도 보강(박직류)
  • 부드럽고 WET한 터치감 부여

인체 유해성 제거 및 환경규제 대응

  • 유기용제(TOLUEN,MEK,DMF)를 함유하지 않음.
  • 화재위험성 제거
  • 작업환경 쾌적
  • 국가 안전규정(KPS)에서 규정하는 유해물질(T.B.T, D.B.T, 포름알데히드)포함하지 않음
  • 대기오염 배출원인 물질 및 시스템 미포함(2013년 교토의정서 가입후 탄소배출량 조절대비)

'Textile_auxiliary' 카테고리의 다른 글

Maximizing hiding power with TiO2  (0) 2016.01.30
Opacity and tinting strength  (0) 2016.01.30
Substitute products for urea  (0) 2015.12.11
특허로보는기술_Printing process  (0) 2015.12.11
Reactive Dye Fixing Agent  (0) 2015.11.05
Posted by 겨울소나기

Indian Journal of Fibre & Textile Research
Vol 29-December 2004-pp 462-469

Substitute products for urea in application of reactive dyes to cotton fabrics

Geeta N Shetha & Aparna A Musale

The Bombay Textile Research Association, L.B.S. Marg, Ghatkopar (W), Mumbai 400 086, India

Received 28 July 2003; revised received and accepted 7 November 2003

Caprolactam, PEG 400 and PEG 600 have been identified as partial or complete substitutes of urea in the dyeing and printing of reactive dyes on cotton fabrics. It is observed that the caprolactam in many reactive dyes can replace urea while PEG 400 and PEG 600 are effective for replacement to the extent of about 50% of the optimum concentration of urea required for fixation.

Keywords: Caprolactam, Cotton, Dyeing, Polyethylene glycol, Printing, Urea

IPC Code: Int. Cl.7: C09B 62/00, D06P 1/38, D06P 3/62

 


1 Introduction

During dyeing/printing of cellulosic fibres with reactive dyes, the addition of urea to the pad-liquor or print-paste is recommended and it is considered by textile printers that such addition results in brighter and more level prints. Specific action of urea in continuous dyeing or printing with reactive dyes is highly complex and different opinions have been expressed to explain the results obtained under different conditions of application regarding the role played by urea1-8. Main functions of urea during continuous application of reactive dyes have been found to be the increasing solubility of dye in reaction medium, controlling evaporation of water during drying and swelling of cotton, thereby facilitating the dye-fibre reaction.

However, when dyeings or prints containing urea are washed-off, the urea is decomposed easily producing nitrogenous compounds which accelerate the growth of algae, resulting in undesirable stream pollution. In view of the fact that the environmental regulations regarding stream pollution are becoming more rigid, different approaches for elimination or replacement of urea in dyeing and printing have been adopted. Some of them are given below:

·     Partial or complete substitution of urea by alternate products8-10.

·     Controlled mechanical application of moisture before sample enters in steamer11.

·     Controlled drying of urea-free printed fabrics prior to steaming12.

·     Adoption of two-stage printing through flash ageing.

·     Replacement of sodium alginate by synthetic thickeners.

In the present study, different dye-solublising agents and hydrotropic substances have been examined as chemical substitutes for urea, whereby simple substitution of a more environment-friendly product could be effected.

2 Materials and Methods

2.1 Materials

2.1.1 Fabric

Mills desized, scoured, mercerized and bleached cotton fabric (warp count 30s; weft count 30s; ends/inch 96; and picks/inch 60) was used in the study. The procedures followed for desizing, scouring, mercerizing and bleaching were as follows:

Desizing

Amylase enzyme                       :       0.8 g/L

Calcium chloride                        :       1 g/L

Sodium chloride                         :       1 g/L

Duration                                   :       4 h

pH                                            :       7.0

Machine                                   :       JT-10 (Jig)

Scouring

Sodium hydroxide                      :       4 % owf

Wetting agent                            :       0.5%

Temperature                             :       950C

Duration                                   :       3 h

Machine                                   :       JT-10 (Jig)

Mercerization

Scoured fabric was mercerized with 300 g/L caustic soda.

Bleaching

H2O2                                        :       2% owf

Stabiliser                                   :       0.6 % owf

Wetting agent                            :       0.3 % owf

Temperature                             :       950C

Duration                                   :       2 h

Fabric was given hot and cold wash and neutralized with 0.5-1 g/L acetic acid at every stage of operation.

2.1.2 Dyes

Vinyl sulphone reactive dyes used were C.I. Reactive Yellow 15, C.I. Reactive Yellow 37C.I. Reactive Orange 107, C.I. Reactive Orange 16, C.I. Reactive Red 35, C.I. Reactive Red 37, C.I. Reactive Violet 5, C.I. Reactive Blue 21, C.I. Reactive Blue 19 and C.I. Reactive Black 5.

2.1.3 Chemicals

Substitute products (laboratory reagent) used were cellosolve, glycerine, sorbitol, polycarboxylic acid, polyethylene glycol (200, 400, 600, 4000) and caprolactam.

2.2 Methods

2.2.1 Dyeing

2.2.1.1 Pad-dry-cure Method

Padding liquor consisted of following ingredients:

Dye                                          :       40 g/L

Urea or substitute product          :       20-80 g/L

Sodium bicarbonate                   :       36 g/L

Water                                       :       904-844 ml


Total                                         :       1000 g

Fabric was padded on ERNST BENZ AG padding mangle with dye solution keeping an expression of 80%, dried at 80 oC and cured in Werner Mathis AG Drier Steamer at 140 oC for 90 s.

2.2.1.2 Pad-dry-steam Method

Padding liquor consisted of following ingredients:

Dye                                          :       40 g/L

Urea or substitute product          :       20-80 g/L

NaHCO3                                  :       18 g/L

Water                                       :       922-862 ml

Total                                         :       1000 g

 

Fabric was padded with dye solution keeping an expression of 80%, dried at 80oC and steamed in Star Steamer at 100-103oC for 7 min.

2.2.2 Printing

2.2.2.1 Print-dry-cure method

Print paste consisted of following ingredients:

Thickening agent

Sodium alginate, 8%                  :       450 g/kg

Dye                                          :       40 g/kg

Urea or substitute product          :       10-100 g/kg

Resist salt                                 :       15 g/kg

NaHCO3                                  :       25 g/kg

Water                                       :       460-370 ml

Total                                         :       1000 g

Fabric was printed, dried at 90oC and cured at 140oC for 90 s.

2.2.2.2 Print-dry-steam Method

Print paste consisted of following ingredients:

Thickening agent

Sodium alginate, 8%                  :       450 g/kg

Dye                                          :       40 g/kg

Urea or substitute product          :       10-100 g/kg

Resist salt                                 :       15 g/kg

NaHCO3                                  :       20 g/kg

Water                                       :       465-375 ml

Total                                         :       1000 g

Fabric was printed, dried at 90oC and steamed at 100-103 oC for 10 min. Dyed or printed fabrics were washed with 5 g/L non-ionic detergent at 95oC for 30 min to remove unfixed dye.

2.2.3 Colour Strength Measurement

Colour strength (K/S) was calculated from reflectance measurements carried out on Macbeth Color Eye-7000A spectrophotometer using the following Kubelka-Munk equation:

K/S = [(1 – R)2/2R ]

where R is the reflectance; K, the absorption coefficient; and S, the scattering coefficient.

3 Results and Discussion

3.1 Substitution in Dyeing

Table 1 ¾ K/S values for vinyl sulphone dyes used in presence of different amounts of urea

Dye

K/S value

Pad-dry-cure

Pad-dry-steam

Nila

10a

20a

40a

60a

80a

Nila

20a

40a

60a

80a

C. I. Reactive Yellow 15

4.1

-

4.2

5.6

7.7

13.0

14.9

15.8

15.8

15.5

15.2

C. I. Reactive Orange 107

11.1

12.7

13.2

16.6

16.6

16.8

17.6

17.7

17.0

17.3

17.6

C. I. Reactive Red 35

7.8

8.5

8.5

9.8

12.1

12.3

15.2

17.1

17.3

15.6

15.1

C. I. Reactive Blue 21

-

-

-

-

-

-

18.2

16.9

19.1

20.6

21.3

C. I. Reactive Blue 19

4.7

4.5

4.9

7.4

7.4

9.1

9.9

11.0

10.1

10.2

9.6

aUrea concentration in g/liter

 

It is known that the quantity of urea normally recommended for incorporation in pad liquor varies between 50 g/L and 60 g/L depending on the method of fixation adopted. However, this is not the optimum amount for maximum fixation of reactive dyes, and it varies from dye to dye and type of reactive system in the dye molecule. Therefore, in the present study, the optimum concentrations of urea required under given set of conditions have been obtained for each dye examined using pad-dry-cure and pad-dry-steam techniques. Subsequently, the effect of reducing this quantity progressively and replacing it by alternate substitutes without any adverse effect on the extent of fixation has been examined.

Table 1 indicates that in case of pad-dry-cure technique, the extent of fixation increases as the concentration of urea increases from 10 g/L to 80 g/L. With C. I. Reactive Orange 107 and Red 35, beyond 60 g/L urea concentration the fixation remains more or less the same while with C. I. Reactive Yellow 15 and Blue 19, the optimum quantity of urea is 80 g/L. In case of pad-dry-steam technique, beyond an optimum concentration (20g/L), further increase in concentration to 80 g/L results in a decrease in fixation or the extent of fixation remains the same. Such reduction in fixation is likely to be because of rupture of vinyl sulphonedye-fibre bond due to the combined alkaline action of urea and sodium carbonate from bicarbonate. However, with C. I. Reactive Blue 21, which is a metal-complex vinyl sulphone dye and has low reactivity to cellulose, the extent of fixation increases when the quantity of urea is increased from 20g/L to 80 g/L.

To evaluate alternate substitutes for urea in dyeing with vinyl sulphone reactive dyes, the main consideration has been given to the ability of substitute product to bring about effective solublisation of dye in the padding liquor and retention of sufficient quantity of moisture in the fabric during the curing stage where fixation of dyes takes place in case of pad-dry-cure application. Cellosolve, glycerine, sorbitol and polyacrylic acid were examined for partial substitution. However, it is observed that none of these products individually or in combination has been an effective substitute for urea, and the extent of fixation in every case is always less as compared to that obtained at optimum concentration of urea.

After intensive screening of several substitute products, three products have been experimentally identified as partial or complete replacement of urea in continuous methods of dyeing. These are polyethylene glycols (PEG) 400 and 600 and caprolactam.

Table 2 ¾ K/S values for vinyl sulphone dyes used in presence of different molecular weight PEG

Product

Conc. of product,
 g/L

K/S value

C. I. Reactive Yellow 15

C. I. Reactive Orange 107

C. I. Reactive Red 35

C. I. Reactive Blue 21

C. I. Reactive Black 5

Urea

Nil

7.5

12.6

8.0

10.7

25.6

60

11.6

16.7

12.4

12.6

27.7

PEG 200

20

9.0

14.1

9.3

11.0

-

40

9.9

13.0

9.4

10.6

-

60

9.5

12.3

9.2

11.6

-

80

8.6

10.9

8.9

11.1

-

PEG 400

20

10.0

16.3

11.3

10.4

27.1

40

10.5

14.0

11.4

11.7

26.0

60

10.3

12.9

10.0

11.1

22.4

80

10.3

12.2

10.7

11.1

23.1

PEG 600

20

9.6

15.9

13.1

9.9

28.4

40

10.4

14.2

10.6

9.9

24.3

60

9.8

13.3

10.1

10.3

20.1

80

9.5

12.2

9.4

10.2

17.8

PEG 4000

20

7.3

12.5

11.1

7.1

-

40

7.1

11.5

10.4

6.4

-

60

7.0

9.4

9.2

6.5

-

80

7.0

9.3

8.0

6.4

-

 

 

To find out appropriate molecular weight polyethylene glycols, the PEG molecular weights ranging form 200 to 4000 have been examined at different concentrations as substitute for urea (Table 2). It is observed that the PEG 400 and PEG 600 show comparable fixation for C I. Reactive Orange 107, Red 35 and Black 5, while C. I. Reactive Yellow 15 and Blue 21 show lower colour value as compared to that observed at optimum concentration of urea in case of dyeing with continuous methods. Caprolactam at 60-80 g/L concentration shows fixation, for most of the dyes, equivalent to that observed at optimum concentration of urea, irrespective of the method of dyeing. Thus, PEG 400 and PEG 600 can replace urea partially while caprolactam can replace urea completely in case of continuous methods of dyeing (Tables 2-4, Fig.1).

3.2 Substitution in Printing

As mentioned earlier, three substitute products have been identified as partial or complete replacement for urea in the dyeing of cotton textiles with reactive dyes using continuous methods of application, viz. pad-dry-cure and pad-dry-steam techniques. It was, therefore, thought desirable to examine the feasibility of urea substitution by these three substitute products during printing with reactive dyes, as urea is used as dye-solubilising agent as well as a hydrotope in large quantities during

printing.

Table 3 ¾ K/S values for vinyl sulphone dyes used in presence of different molecular weight PEG at optimum concentrations

Dye

K/S value

Pad-dry-cure

Pad-dry-steam

Urea

PEG 400 (20 g/L)

PEG 600 (20 g/L)

Urea

PEG 400 (10 g/L)

PEG 600
(10 g/L)

Nil

60 g/L

 

 

Nil

20 g/L

60 g/L

 

 

C. I. Reactive Yellow 15

7.5

11.6

10.0

9.6

14.2

15.8

15.5

12.9

12.6

C. I. Reactive Orange 107

12.6

16.7

16.3

15.9

18.1

20.0

17.3

21.4

17.2

C. I. Reactive Red 35

8.0

12.4

11.3

13.1

16.4

17.1

15.6

17.3

20.2

C. I. Reactive Blue 21

10.7

12.6

10.4

9.9

18.8

16.9

21.6

19.9

17.7

C. I. Reactive Black 5

25.6

27.7

27.1

28.4

29.0

29.3

30.3

30.1

30.1

Table 4 ¾ K/S values of printed samples produced with vinyl sulphone dyes in presence of different amounts of urea

Dye

K/S value

Print-dry-cure

Print-dry-steam

Nila

10a

20a

50a

70a

100a

Nila

10a

30a

50a

70a

100a

C. I. Reactive Yellow 15

2.2

2.2

2.1

3.3

7.2

14.8

25.1

24.5

25.0

25.0

26.7

25.8

C. I. Reactive Orange 107

-

4.2

6.4

12.3

21.2

21.4

26.3

25.7

25.2

25.3

25.5

24.7

C. I. Reactive Red 37

3.8

4.1

6.1

9.9

16.9

23.3

27.3

27.4

27.1

27.0

26.6

26.6

C. I. Reactive Blue 28

2.7

3.5

5.5

9.9

13.6

14.8

-

-

-

-

-

-

C. I. Reactive Blue 19

-

-

-

-

-

-

15.6

14.9

15.7

16.7

19.3

21.4

C. I. Reactive Blue 21

2.6

3.5

4.1

6.4

13.1

14.7

22.9

22.7

23.0

23.3

24.5

25.6

C. I. Reactive Black 5

-

11

15.2

21.6

25.1

25.2

-

-

-

-

-

-

aUrea concentration in g/L

 

 

 

In the first instance, the optimum concentrations of urea required for effective fixation of different reactive dyes by print-dry-cure and print-dry-steam techniques of application were determined. Once this quantity was determined, the effect of substitute products could be determined without any adverse effect on the extent of fixation.

Table 4 shows that in case of print-dry-cure technique, as the concentration of urea is increased from 70 g/kg to 100 g/kg, the colour value increases for C. I. Reactive Yellow 15, Red 37, Blue 28 and Blue 21 while with C. I. Reactive Orange 107 and Black 5, the increase in concentration of urea has practically no effect on the extent of fixation.

In case of print-dry-steam technique, with C. I. Reactive Blue 19 and Blue 21, the extent of fixation increases progressively as the concentration of urea in the print paste is increased from 50 g/kg to 100 g/kg print paste while with C. I. Reactive Yellow 15, Orange 107 and Red 37, the fixation remains more or less the same with or without urea. With later three dyes, the marginal decrease is observed in presence of urea (Table 4). This decrease is likely to be due to the increase in alkali content in the print paste as a result of combination of higher quantities of urea and bicarbonate, which, in turn, may result in rupture of vinyl sulphone dye-fibre bond.

For studying feasibility of partial or complete substitution of urea, PEG 400, PEG 600 and caprolactam have been examined both for print-dry-cure and print-dry-steam methods. As these substitute products are acidic (pH 5.0-6.0) in nature, the compatibility with sodium alginate thickener was examined by viscosity measurement in Brookfield viscometer. The changes in viscosity of print paste in the absence and presence of dye show comparable results among the entire three substitute products individually and in combination with urea in comparison to the results obtained at optimum concentration of urea in the print paste.

Fig. 1 ¾ Reflectance (K/S) values of dyeings produced with
vinyl sulphone dyes applied by continuous methods in
presence of optimum concentrations of caprolactam

 

Fig. 2 ¾ Reflectance (K/S) values of printed samples produced with vinyl sulphone dyes applied by print-dry-cure method in presence of different products at optimum concentrations

 

 

 

Subsequently, the printing was carried out in presence of different substitute products and urea. The results indicate that in case of print-dry-cure method of fixation, it is not possible to substitute urea completely by any of the three substitute products when compared to the results obtained at optimum concentration of urea (100 g/kg) (Fig. 2). However, the dye fixation is always higher than that obtained in the absence of urea in print paste. In case of combination of urea (50% of optimum concentration) with the increase in concentration of each of the three substitute products, the extent of fixation increases. The optimum concentration obtained for both PEG 400 and PEG 600 is 30g/kg, while for caprolactam it is 50g/kg when used along with 50g urea/ kg print paste for comparable fixation (Fig.3). However, PEG 400 gives more or less comparable fixation for C. I. Reactive Yellow 15, Orange 107 and Red 37 while lower colour value is observed for C. I. Reactive Blue 19 and Blue 21, as compared to that observed at optimum concentration of urea. PEG 600 gives comparable fixation for C. I. Reactive Orange 107 and Red 37 and lower fixation for C. I. Reactive Yellow 15, Blue 19 and Blue 21 as compared to that  obtained  at   optimum  concentration   of   urea.

Fig. 3 ¾ Reflectance (K/S) values of printed samples produced with vinyl sulphone dyes applied by print-dry-cure method in presence of different products at optimum concentrations and reduced quantity of urea

 

Fig. 4 ¾ Reflectance (K/S) values of printed samples produced with vinyl sulphone dyes applied by print-dry-steam method in presence of different products at optimum concentrations

Fig. 5 ¾ Reflectance (K/S) values of printed samples produced with vinyl sulphone dyes applied by print-dry-steam method in presence of different products at optimum concentrations and reduced quantity of urea

 

Table 5 ¾ Biodegradability of urea and different substitute products

Product

Biodegradability after 28 days, %

Urea

15.5

PEG 400

64.5

PEG 600

70.9

Caprolactum

98.6

 

 

Caprolactam shows comparable fixation to that of urea for all dyes studied except C. I. Reactive Blue 21.

In case of print-dry-steam method of fixation, 50g/kg of caprolactam completely replaces urea for equivalent fixation obtained at optimum concentration of urea (70g/kg) for all the dyes studied (Fig. 4). PEG 400 or PEG 600 alone at 20g/kg in print paste gives colour value comparable to that observed using 70g/kg of urea (Fig. 4), except for C. I. Reactive Blue 19 and Blue 21. However, at 50% of optimum concentration of urea (35 g/kg print paste) and 20 g/kg PEG 400 or PEG 600, the fixation is comparable to that observed using 70g/kg urea alone (Fig. 5). In case of C. I. Reactive Blue 19, the presence of PEG 400 or PEG 600 gives marginally lower colour value as compared to that observed at optimum concentration of urea.

Biodegrability is calculated in terms of BOD/COD ratio. Results indicate that biodegrad­ability of the substitute products is greater than that of urea (Table 5).

4 Conclusion

It appears possible to partially substitute urea by two specific types of polyethylene glycols and in some cases even complete substitution can be effected by caprolactam without much sacrifice in colour value of dyeings/prints. Products are biodegradable.

Acknowledgement

The authors are thankful to the Ministry of Textiles, Government of India, for sponsoring this research project. They are also thankful to Dr. A N Desai, Director, BTRA, for the support and to Prof. E H Daruwalla for valuable discussion during the course of work.

References

1           Baugamarate U, Melliand Textilber, 46 (1965) 851.

2           Neiderer H & Ulrich P, Textilveredlung, 3 (1968) 337.

3           Kissa E, Text Res J, 39 (1969) 734.

4           Hilderbrand D, Melliand Textilber, 49 (1968) 67.

5           Stepanek O & Weigl B, Text-Prax Int, 24 (1969) 242.

6           Von der Eltz H, Melliand Textilber, 52 (1971) 687.

7           Koch R, Melliand Textilber, 73 (1992) 962.

8           Herlinger H, Fiebig D & Kast B, Text-Prax Int, 45 (1990) 1291.

9           Provost J, J Soc Dyers Colour, 108 (1992) 260.

10        Knittel D & Schollmeyer E, Textilveredlung, 31 (1996) 153.

11        Text Month, 5 (1982) 51.

12      Reyes M, Revista de Qumic Textil, 125 (1995) 91; Colourage, 43 (9) (1996) 54.


Posted by 겨울소나기
Process for printing cellulosic textile material with reactive dyes: print paste free of urea; wetting of dried printed fabric prior to fixing

Abstract (English, US 5106388)

There is disclosed a process for printing cellulosic textile material with reactive dyes which contain at least one monohalotriazine radical, which process comprises printing said material, without the addition of urea, in a single step and wetting the dried printed goods with water for the fixation step. The novel process gives level and deep prints of excellent appearance without the use of urea.

The present invention relates to a process for printing cellulose textile material with reactive dyes which contain at least one monohalotriazine group, in which process printing is carried out in a single step without the addition of urea.

It has long been known, for example from U.S. Pat. No. 4,604,099, to print cellulosic materials with reactive dyes. In the known processes, it is necessary to use substantial amounts of urea, which is responsible, inter alia, for enhancing dye solubility and, most especially, for a sufficient degree of fixation.

However, aside from these favourable properties for the printing, dyeing and fixing process with reactive dyes, urea constitutes a substantial pollution factor in the wastewaters. There has therefore been no lack of efforts to reduce the amount of, or to eliminate, the urea or to find substitutes for it. The results have, however, been unsatisfactory.

Surprisingly, it has now been found that it is possible to print cellulosic textile material with reactive dyes, without the addition of urea, to give coloured prints with a high degree of fixation.

Accordingly, the present invention relates to a process for printing cellulosic textile material with reactive dyes which contain at least one monohalotriazine radical, which process comprises printing said material, without the addition of urea, in a single step and wetting the dried printed goods with water for the fixation step.

The invention further relates to the cellulosic textile material printed by the inventive process.

The dyes used in the process of this invention are reactive dyes which contain a monohalotriazine group and which are suitable for dyeing or printing cellulosic textile materials.

The monohalotriazine group is a monofluorotriazine, monobromotriazine or, preferably, a monochlorotriazine group.

The amount of dye will normally depend on the desired colour strength and is conveniently 0.1 to 300 g/kg, preferably 0.1 to 100 g/kg and, most preferably, 5 to 60 g/kg of print paste.

When reactive dyes are used, the print pastes will normally contain a fixing alkali. Alkalies which may be suitably used for fixing the reactive dyes are typically sodium carbonate, sodium hydrogencarbonate, sodium hydroxide, disodium phosphate, trisodium phosphate, borax, aqueous ammonia or alkali donors such as sodium trichloroacetate or sodium formate. A mixture of water glass and a 25% aqueous solution of sodium carbonate can also be used as alkali.

The alkali-containing print pastes normally have a pH in the range from 7.5 to 13.2, preferably from 8.5 to 11.5.

In addition to the dyes, the aqueous print pastes used for the inventive process also contain a thickener, preferably of natural origin, by itself or in admixture with modified cellulose, most preferably with at most 25% by weight of carboxymethyl cellulose. If desired, the print pastes contain preservatives, chelating agents, emulsifiers, water-insoluble solvents, oxidising agents and deaerating agents.

Particularly suitable preservatives are formaldehyde donors such as paraformaldehyde and trioxane, especially ca. 30 to 40% aqueous formaldehyde solutions. Suitable chelating agents are typically sodium nitrilotriacetate, sodium ethylenediaminetetraacetate, preferably sodium polymethaphosphate, most preferably sodium hexamethaphosphate. Particularly suitable emulsifiers are polyadducts of an alkylene oxide with a fatty alcohol, preferably a polyadduct of oleyl alcohol with ethylene oxide. Suitable water-insoluble solvents are high-boiling saturated hydrocarbons, preferably paraffins having a boiling range of ca. 160.degree. to 210.degree. C. (white spirits). Suitable oxidising agents are typically aromatic nitro compounds, preferably an aromatic mono- or dinitrocarboxylic acid or mono- or dinitrosulfonic acid which may be in the form of a polyadduct of ethylene oxide, especially a nitrobenzenesulfonic acid. Suitable deaerating agents are typically high-boiling solvents, preferably terpentine oils, higher alkanols, preferably C8 -C10 alcohols, terpene alcohols or deaerating agents based on mineral and/or silicone oils, preferably commercial formulations of ca. 15 to 25% by weight of a mineral and silicone oil mixture and ca. 75 to 85% by weight of a C8 alcohol such as 2-ethyl-n-hexanol.

The process of the present invention is suitable for printing textiles which consist of, or contain, cellulose.

The textile materials are in particular flat textile structures such as nonwovens, felts, carpets, woven goods and, preferably, knitted goods. The process of the invention is suitable for fibre materials which have been treated with aqueous sodium hydroxide, preferably for cellulosic material and regenerated cellulose such as viscose rayon.

For printing the fibre materials, the print paste is applied direct to the whole or part of the surface, conveniently using printing machines of conventional make, for example rotogravure, rotary screen printing and surface screen printing machines.

After it has been printed in the temperature range up to 150.degree. C., the fibre material is preferably dried at 80.degree. to 120.degree. C. Before fixing the dyes, the fibre material is wetted on the face, on the back or on both sides with water. This wetting with water may be effected in different ways, for example by direct or indirect methods of application. The fibre material can be wetted direct by spraying with a commercial atomiser, by roller systems, with screens or by applying water in the form of foam, or by rotary wetting, the principle of which is described in detail in Textilpraxis International, 111a (1987). Wetting can be carried out indirectly by contacting the fibre material to be fixed with a cloth which is moistened with water. The cloth acts here as moisture carrier. The amount of water applied is in the range from 5 to 50% by weight, preferably from 10 to 40%, based on the printed, dry fibre material.

After the wetting, the dyes are fixed on the material. Fixing is effected by subjecting the material to a heat treatment in the temperature range from preferably 100.degree. to 220.degree. C. The heat treatment is normally carried out with steam under atmospheric pressure.

The fibre material is thereafter normally given a washing off with cold and then hot water, if desired followed by a further washing off with cold water.

The process of this invention gives level, full-shade coloured prints of excellent appearance. In particular, the fixing step of this invention makes it possible to obtain coloured prints with reactive dyes on cellulosic textile materials, especially viscose rayon, without the addition of urea, which is normally used in substantial amounts.

In the following Examples, parts and percentages are by weight unless otherwise stated.

EXAMPLE 1

Causticised viscose rayon is printed on-shade with a print paste comprising 7 g/kg of a commercial powdered formulation of the dye of formula (101) ##STR1## 50 g/kg of a commercial liquid formulation of the dye of formula ##STR2## 32 g/kg of a commercial liquid mixture of the dyes of formulae
__________________________________________________________________________

##STR3## (103) and

##STR4## (104)

8.9 g/kg of sodium m-nitrobenzenesulfonate

89 g/kg of 25% Na2 CO3 solution

490 g/kg of 6% sodium alginate solution

1.8 g/kg of a deaerating agent, and

321.3 g/kg of water,

__________________________________________________________________________

dried for one minute at 120.degree. C., wetted with water using a minimum-liquor applicator (amount: 30%, based on the weight of the material), then steamed in a steamer for 8 minutes at 105.degree. C. at atmospheric pressure, and subsequently washed with cold and then with boiling water until unfixed dye and the auxiliaries have been removed.

After drying the material at 90.degree.-120.degree. C., a deep brown print is obtained.

Repetition of the above procedure, but without wetting the material before steaming, gives a spoiled, very weak print, as under these conditions only insignificant fixation takes place.

EXAMPLE 2

Bleached, causticised viscose rayon is printed with a print paste comprising

__________________________________________________________________________

25 g/kg of a commercial granular formulation of the dye of formula

##STR5## (105)

9 g/kg of sodium m-nitrobenzenesulfonate

60 g/kg of 25% Na2 CO3 solution

406 g/kg of water, and

500 g/kg of 6% sodium alginate solution.

__________________________________________________________________________

The printed material is dried normally, such that the total moisture content after drying is 5.5%, based on the weight of the material. A further 45% of water is then applied from a spray jet and the wetted material is treated in a steamer for 8 minutes under atmospheric pressure at a temperature of 115.degree. C., and thereafter washed with cold and with boiling water until unfixed dye and the auxiliaries have been removed. After drying, a full, turquoise shade is obtained. If the printed material is steamed immediately after drying without spray wetting, the resultant shade is 60% weaker and therefore spoiled. The desired colour strength without additional wetting is only obtained by adding 150 g/kg of urea.

EXAMPLE 3

A print paste of the following composition is prepared:

__________________________________________________________________________

40 g of a commercial granular formulation of the dye of formula

##STR6## (106) are added, with stirring, to 960 g of a stock thickening comprising

9.5 g of sodium m-nitrobenzenesulfonate

60 g of 25% Na2 CO3 solution

410.5 g of water, and

480 g of 6% sodium alginate solution

__________________________________________________________________________

and the print paste so obtained is printed on bleached, mercerised cotton knitwear and dried to a residual moisture content of 3.5%, based on the weight of the goods. The printed material is wetted with water from a spray jet to a residual moisture content of 50%, based on the weight of the dry goods, immediately before being steamed for 8 minutes in a steamer under atmospheric pressure at 115.degree. C. After a conventional washing-off, a deep, royal blue print is obtained. The print is markedly weaker in shade and unlevel if the material is not additionally wetted before steaming.

EXAMPLE 4

A cellulosic material is printed and dried as described in Example 2. The water content is in this case only 10% (instead of 45%), based on the weight of the goods. In the subsequent steam treatment the temperature is kept at 102.degree. C. The steaming time is 8 minutes. The turquoise shade obtained after the washing-off has the same colour strength as in Example 2. Omission of the wetting results in a 40% weaker print. Only the addition of 100 g/kg of urea gives a comparably deep shade without wetting the material before steaming.

What is claimed is:

1. A process for printing cellulosic textile material which comprises:

(a) printing a textile material with a fiber-reactive dye containing at least one monohalotriazine radical, the printing being carried out in a single step and in the absence of urea,

(b) drying the printed textile material,

(c) wetting the dried printed material with water, and

(d) subsequently fixing the dye with steam under atmospheric pressure.

2. A process according to claim 1, wherein the at least one monohalotriazine radical is selected from the group consisting of monofluorotriazine, monobromotriazine and monochlorotriazine.

3. A process according to claim 1, wherein the fiber-reactive dye is present in a print paste in an amount between about 0.1 to 300 g dye/kg print paste.

4. A process according to claim 3, wherein the print paste includes a fixing alkali.

5. A process according to claim 4, wherein the fixing alkali is selected from the group consisting of sodium carbonate, sodium hydrogen carbonate, sodium hydroxide, disodium phosphate, trisodium phosphate, borax, aqueous ammonia, sodium trichloroacetate and sodium formate.

6. The process according to claim 4, wherein the print paste has a pH in the range of about 7.5 to about 13.2.

7. The process according to claim 6, wherein the print paste has a pH in the range of about 8.5 to 11.5.

8. The process according to claim 1, wherein the printing of step (a) occurs at a temperature of less than 150.degree. C.

9. The process according to claim 1, wherein the drying of the printed textile material in step (b) occurs at a temperature of between about 80.degree. C. and 120.degree. C.

10. The process according to claim 1, wherein the dried printed material has a face surface and a back surface, and is wetted in step (c) on the face surface, on the back surface or on both surfaces of the material.

11. The process according to claim 1, wherein the dried printed material is directly wetted in step (c) by spraying with a commercial atomizer, by using roller systems or screens, by applying foam which contains water, or by rotary wetting.

12. The process according to claim 1, wherein the dried printed material is indirectly wetted in step (c) by contacting the dried printed material with a cloth which is moistened with water.

13. The process according to claim 1, wherein the amount of water with which the dried printed material is wetted in step (c) weighs between about 5 to 50% of the dried printed material.

14. The process according to claim 13, wherein the amount of water with which the dried printed material is wetted in step (c) weighs between about 10 to 40% of the dried printed material.

15. The process according to claim 1, wherein the fixing of the dye in step (d) occurs at a temperature of between about 100.degree. and 200.degree. C.

16. The process according to claim 1, further including the steps of

(e) washing the printed material with cold water, and

(f) subsequently washing the printed material with hot water.

17. The process according to claim 16, further including the step of

(g) washing the printed material again with cold water.

18. A process according to claim 7, wherein the cellulosic material used is regenerated cellulose.

19. A process according to claim 7, wherein the cellulosic material used is viscose rayon.

20. Printed textile material obtained by a process as claimed in claim 7.





Posted by 겨울소나기

Wel Fixer RF-33

Purpose: Reactive Dye Fixing Agent
Ingredient: Polyamine Resin
Ion: Cation
Characteristic:

  1. Improve colorfastness to washing and water, etc..
  2. Suitable for color fixing of reactive dye.
  3. Suitable for cotton dyeing.
  4. bluesign®approved.

Application:Cotton

Wel Fixer RF-36

Purpose: Reactive Dye Fixing Agent
Ingredient: Polyamine Resin
Ion: Cation
Characteristic:

  1. Improve colorfastness to washing and water, etc..
  2. Suitable for color fixing of reactive dye.
  3. Suitable for cotton dyeing.
    4 bluesign®approved.

Application:Cotton

Wel Fixer RF-39

Purpose: Reactive Dye Fixing Agent
Ingredient: Polyamine Resin
Ion: Cation
Characteristic:

  1. Improve colorfastness to washing and water, etc..
  2. Suitable for color fixing of reactive dye.
  3. Suitable for cotton dyeing.
  4. bluesign®approved.

Application:Cotton

Wel Fixer RF-CL

Purpose: Chlor-Resistent for Reactive Dye
Ingredient:
Ion: Cation
Characteristic:

  1. Enhance colorfastness of chlorine.
  2. Enhance colorfastness of washing, perspiration, and rubbing.

Application:Cotton

Wel Fixer LF-70

Purpose: Light Fastness Improver
Ingredient: Hydrazine Derivatives
Ion: Nonion
Characteristic:

  1. Enhance colorfastness to sunlight.
  2. Prevent textile from yellowing or shading during high temperature processing.
  3. Good stability and compatible with other auxiliaries.

Application: Nylon, Cotton.


Posted by 겨울소나기

Marita Dionísio and Ana Grenha

Author information ► Article notes ► Copyright and License information ► This article has been cited by other articles in PMC.

Abstract

Polysaccharides have been finding, in the last decades, very interesting and useful applications in the biomedical and, specifically, in the biopharmaceutical field. Locust bean gum is a polysaccharide belonging to the group of galactomannans, being extracted from the seeds of the carob tree (Ceratonia siliqua). This polymer displays a number of appealing characteristics for biopharmaceutical applications, among which its high gelling capacity should be highlighted. In this review, we describe critical aspects of locust bean gum, contributing for its role in biopharmaceutical applications. Physicochemical properties, as well as strong and effective synergies with other biomaterials are described. The potential for in vivo biodegradation is explored and the specific biopharmaceutical applications are discussed.

KEY WORDS:

Controlled release, gelling capacity, locust bean gum, polysaccharides, synergy


Nature provides an impressive array of polymeric materials that have been finding very interesting applications in the biomedical field, mainly because they are known to perform a diverse set of functions in their native environment. Polysaccharides, for instance, play well-known functions in membranes and intracellular communication, while proteins function as structural materials and catalysts.[1] In addition, the current trend is to mimic nature and there are no better candidates to such a task than the proper materials from nature. Natural biopolymers illustrate, as an impressive example, how all the properties displayed by biological materials and systems are exclusively determined by the physicochemical properties of the monomers and their sequence.[2] These natural materials have some remarkable merits over synthetic ones, namely improved capacity for cell adhesion and mechanical properties similar to natural tissues.[3] Moreover, they are economical, readily available, non-toxic, usually biodegradable and, with few exceptions, also biocompatible.[4,5] On the other hand, some intrinsic limitations are also to take into account, such as the highest possibility of immunogenicity and polymer variability related to both origin and supplier.[3] Another relevant aspect contributing for the increasing interest in polysaccharides relies on the discovery of new synthetic routes for their chemical modification, which permit the promotion of new biological activities and the modification of their properties for specific purposes.[6,7] Additionally, the biological activity of polysaccharides is being increasingly recognized for human applications.[8] Polysaccharides have been marking a strong position in the biomedical field, as their different chemical structures and physical properties comprise a large source of materials that can be used in different applications, varying from tissue engineering and preparation of drug vehicles for controlled release, to imaging techniques and associated diagnosis. In a general manner, polysaccharides play leading roles as thickening, gelling, emulsifying, hydrating, and suspending agents, finding diverse applications in the above-mentioned areas.[8]

The most common basic unit of polysaccharides is the monosaccharide D-glucose although D-fructose, D-galactose, L-galactose, D-mannose, L-arabinose, and D-xylose are also frequently present. Some polysaccharides comprise monosaccharide derivatives in their structure, like the amino sugars D-glucosamine and D-galactosamine, as well as their derivatives N-acetylneuraminic acid and N-acetylmuramic acid, and simple sugar acids (glucuronic and iduronic acids). In some cases, polysaccharides are collectively named for the sugar unit they contain, so glucose-based polysaccharides are called glucans, while mannose-based polysaccharides are mannans.[6]

Locust bean gum (LBG) is a neutral polysaccharide composed of mannose and galactose units and, therefore, belongs to the category of galactomannans. This natural polymer has been registering increased interest in the biopharmaceutical field, particularly in oral drug delivery. In this context, it has been showing its application in the design of drug delivery systems, providing the delivery of a defined dose, at a chosen rate, to a targeted biological site. In this review, critical aspects of LBG are exposed, with particular emphasis on the properties that closely affect its biopharmaceutical application, such as its chemical structure, solubility and molecular weight. The most effective synergies with other polysaccharides are described and the reported biopharmaceutical applications are explored and discussed.

Locust Bean Gum Origin and Processing

LBG is extracted from the seeds of the carob tree (Ceratonia siliqua), which is very abundant in the Mediterranean region although its localization also extends to different regions of North Africa, South America, and Asia. The polysaccharide is also referred in the literature by several other synonyms, such as carob bean gum, carob seed gum, carob flour, or even ceratonia.[9]

Carob seeds, which represent approximately 10% of the weight of the fruit, are industrially processed by hull cracking, sifting, and milling operations to isolate and grind the endosperms, which are then sold as crude flour.[10,11] The seeds are mainly composed of galactomannan, which comprises approximately 80%, the rest corresponding to proteins and impurities.[10,12] The protein content of LBG was reported to include approximately 32% albumin and globulin, while the remaining 68% correspond to glutelin.[13] Impurities mainly refer to ash and acid-insoluble matter.[10] After seed processing, crude galactomannan can be further submitted to several processes to eliminate both the protein content and impurities. These procedures include enzymatic or alkaline hydrolysis, precipitation with ethanol or isopropanol, and purification by methanol, or by copper or barium complexes.[10,12,14] Impurities usually remain insoluble even when heating at temperatures up to 70°C.[15] Precipitation with isopropanol revealed to be quite efficient in the elimination of proteins. In a general manner, purification steps have demonstrated to result in higher mannose/galactose (M/G) ratios and in a decrease of protein and impurities.[10]

As shown in Figure 1, a recent growing interest for LBG has been observed, with an increasing number of papers reporting its use in various fields. The strongest application of LBG concerns its use as a thickening and stabilizing agent in both food and cosmetic industries[16,17] and first references to the study of its properties date to more than 50 years ago.[18,19] In food industry it is a food additive, coded as E-410 in the European Union.[20] However, recently it has been pointed as a very useful excipient for pharmaceutical applications, as detailed in Section 6 of this review. The observed increase of interest is mainly due to its ability as controlled release excipient in tablets. However, reports of biodegradability, low toxicity, and availability at low cost[16,17,21] also contribute for its increasing use.

Figure 1

 Figure 1 Number of scientific publications published on the topic of “Locust bean gum” as a function of publication years. Taken from ISI Web of Knowledge


Chemical Structure and Physicochemical Properties

Galactomannans are plant reserve carbohydrates present in large quantities in the endosperm of the seeds of many leguminosae such as Ceratonia siliqua (locust bean gum), Cyamopsis tetragonoloba (guar gum), and Caesalpinia spinosa (tara gum).[22,23] Chemically, they consist of a (1-4)-linked β-D-mannose backbone with (1-6)-linked side chains of α- D-galactose,[8,9] being thus neutral polymers.[4] The various galactomannans can be differentiated by the displayed M/G ratio, the substitution pattern of side-chain units and their molecular weight, the latter being influenced by harvesting and manufacturing practices, among other factors.[24] The M/G ratio varies, therefore, depending on the distribution of the galactose units over the mannose backbone, being approximately 4:1 for LBG [Figure 2],[25] 3:1 for tara gum and 2:1 for guar gum.[12] These ratios are always referred as approximate, due to their dependence upon the varying origins of gum materials and plant growth conditions during production.[4] It is important to mention that it is generally recognized that galactose grafts to the mannose chain are not spaced regularly, but instead placed randomly on the linear backbone.[23] This ratio is the main characteristic affecting galactomannans solubility, as higher water solubility is afforded by higher galactose content,[8] an effect that has been justified by the introduction of an entropic, and perhaps steric, barrier to the ordered mannose chain.[24] This observation makes guar gum the most soluble and also the most widely used of the galactomannans, as mentioned in a recently published broad review on applications of guar gum.[26]

Figure 2 

Figure 2 Structure of locust bean gum showing a linear polysaccharide (1-4)-βb-linked backbone of mannose units with single (1-6)-α-d-galactose units attached. Adapted with permission from Coviello et al. One of the most important pros of plant resources is the fact that they are renewable and, if cultivated or harvested in a sustainable manner, it is possible to obtain a constant supply of raw material. However, plant-based materials also pose potential challenges that include the production of small quantities, usually structurally complex, which may differ according to the location of the plants. Other variables, such as the collecting season, might affect material properties. This may result in a slow and expensive isolation and purification process.[4] In this context, several studies have evidenced that the chemical structure and molecular weight of LBG vary systematically with the type of cultivar, growth condition,s or other unknown biological factors.[3,4] This probably justifies, at least in part, why LBG is considered polydisperse from a chemical point of view. Polydispersion is, in this case, a direct result of three types of structural variation: degree of galactose substitution, patterning of galactose side groups, and chain length or degree of polymerization, all directly related with biosynthesis mechanisms.[3] Importantly, different degrees of substitution of the mannose chain will affect the polymer solubility, for instance, among different suppliers.[20,22] This is possibly one of the major drawbacks hindering a more frequent application of this polysaccharide in the biopharmaceutical field, as solubility is one of the major properties to be controlled and which should be necessarily stable under defined conditions.

Solubility and viscosity

Although galactomannans are hydrophilic molecules, their solubility is in many cases reduced. When in solution, these polysaccharides have an extended rod-like conformation and occupy a large volume of gyration. These gyrating molecules collide with each other and with clusters of solvent molecules to produce solutions of high viscosity, a process that is reported to be dependent on the polymer molecular weight.[23] LBG has the capacity to form very viscous solutions at relatively low concentrations, which are almost unaffected by pH, salts, or temperature.[27] In fact, being a neutral polymer, its viscosity and solubility are little affected by pH changes within the range of 3–11.[4] As said before, the M/G ratio is the main property affecting the solubility of galactomannan polysaccharides, which increases with higher galactose substitution. This effect is attributed to the fact that mannose chains are relatively hydrophobic and galactose units more hydrophilic. In this manner, displaying an M/G ratio of approximately 4:1, LBG presents limited solubility, having propensity to form aggregates in cold water, as the long segments of unsubstituted mannose are prone to undergo aggregation.[3,24] These unsubstituted blocks of the backbone can be as large as 50 mannose units and the mentioned relative hydrophobicity, and consequent low solubility, derives from the proximity between these smooth regions of the mannose backbone. These zones permit, consequently, the formation of strong intramolecular hydrogen bonds that reduce the hydration of the gum.[23] In this context, a gum with higher percentage of galactose has good cold water dispersibility and higher viscosity, but poor gelling properties.

Several studies report the solubilization pattern of LBG. It is generally considered that the polysaccharide is only partially soluble at room temperature, achieving 50% solubilization after 1 h stirring (initial dispersion of 0.1% w/w), and a maximum of 70–85% solubilization can be obtained upon 30 min stirring at 80°C.[11,28] This difference of stabilization as a function of temperature has been attributed to the fact that, at high temperature, some molecules, such as high-molecular-weight components and galactomannan with lower galactose substitution, are dissolved, which does not occur at low temperature, reinforcing the idea of locust bean gum polydispersity.[11,29]

In order to overcome the solubility limitations exhibited by galactomannans, carboxyl, hydroxyl, and phosphate derivatives of these polymers have been proposed.[29] In our group, we have also synthesized several LBG derivatives (sulfate, carboxylate, and aminate). However, although in some cases a strong improvement of solubility was observed (for instance, for sulfated LBG), our main goal was to produce charged derivatives for application in the production of drug delivery systems by polyelectrolyte complexation with other polymers.[30]

Molecular weight and industrial depolymerization

In a general manner, the reported molecular weight of LBG situates between 50 and 1000 kDa.[11] Over recent years there has been an increasing interest in LBG and the need to explore specific industrial applications has demanded the development of strategies that provide the hydrolysis of high-molecular-weight molecules. Acid hydrolysis[31,32] and enzymatic hydrolysis have been described, but owing to the fact that LBG, and in a general manner galactomannans, display β-(1,4)-linked mannose residues, the enzyme β-mannanase has been widely explored to provide this effect.[33] The referred enzyme is mainly extracted and purified from bacteria and fungi, which have demonstrated to be excellent producers of extracellular β-mannanase.[33–36] Importantly, the fungus Aspergillus niger is reported as GRAS organism and, thus, the products of this strain are authorized for food applications,[33] converting it in the main source of the enzyme.

Nevertheless, the conversion of any polysaccharide into its basic oligosaccharides involves the breaking of all its units and, in the case of LBG, both the mannose and the galactose units need to be decomposed. Figure 3 displays a schematic representation of the pathways of LBG enzymatic degradation. β-mannanase catalyzes the random cleavage of β-(1,4)-d-mannopyranosyl linkages within the main chain of galactomannans,[37,38] thus providing only a partial depolymerization of LBG.[23] When acting on this polysaccharide, β-mannanase originates mannobiose, mannotriose, and galactomannobiose.[39,40] The affinity of β-mannanase by LBG decreases with the increasing substitution of the mannose chain[37,40] because galactose units cause steric hindrance to the enzyme and, therefore, it only attacks galactose-unsubstituted mannose blocks.[41]

Figure 3 

Figure 3 Schematic representation of locust bean gum enzymatic degradation The complete conversion of galactomannan into the oligosaccharides D-mannose and D-galactose requires the action of two other enzymes, β-mannosidase and α-galactosidase, which can be also obtained from fungi, such as Aspergillus niger[40,42] or bacteria.[34] These enzymes catalyze the cleavage of β-(1,4)-linked d-mannopyranosyl and terminal α-(1,6)-linked D-galactosyl residues, respectively.[42]

Considering the difficulty in depolymerizing LBG, due to the steric effect of galactose residues over β-mannanase, it is usual to start the depolymerization reaction with α-galactosidase, removing some galactose grafts and exposing the mannose chain to the attack of β-mannanase.[23] Industrial depolymerization is mainly performed with α-galactosidase of plant, bacterial, and fungal origin[43] although that of fungal origin is reported as more suitable for technological applications, mainly due to its acidic optimal pH and broad stability profile.[44]

Synergistic Interaction of Locust Bean Gum with Other Polysaccharides

The study of synergistic effects between polysaccharides has a potential industrial interest, as many products involve the formulation of mixed polysaccharide systems. In addition, synergies provide the potential to modulate the rheology of products, which is very important in pharmaceutical formulation.[45] These systems provide a wide variety of structural conditions, which result inevitably in the absence of linearity in their macroscopic properties.

When two macromolecules (with gelling capacity or not) are mixed, it is possible that a synergic interaction takes place, so that it results in the formation of a gel. This gelation process occurs when the polymeric chains of both substances establish a more specific interaction, leading to an increased capacity for water absorption, compared with the sum of the absorption of each substance separately. It can also happen that adding a small amount of a non-gelling polymer to a gelling one induces a strengthening of the resulting gel or, even, some polymers that are individually non-gelling can yield gels upon mixing. This non-additive behavior is termed synergism. Several mechanisms might assist synergistic gel formation. A chemical gel network is formed when covalent bonds are established between the polymer chains. On the other side, physical gels are mediated by the formation of mixed junction zones between segments of the different polymers or by electrostatic interactions occurring between different polymeric chains.[5]

LBG exhibits a significant capacity to form synergistic interactions with other polysaccharides, mainly because of the numerous OH groups present in the molecule structure.[46] This synergy increases the flexibility of the polymer and, in many cases, permits the production of gelling structures with important biopharmaceutical applications. The most important synergies of LBG are observed in contact with xanthan gum and carrageenan.[8,47–49] These interactions will be described in detail below. Interactions between LBG and guar gum have also been reported although they only result in increased viscosity of the solution and not in the formation of a true gel.[50]

Synergy with xanthan gum

Xanthan gum produces high viscosity solutions at low concentration, but it does not naturally gel at any concentration, being insensitive to a broad range of pH, temperature, and electrolyte concentration.[51] These weak gel properties are known to be enhanced by the presence of certain β-(1,4) linked polysaccharides, namely those which normally exist in water solution as random coils and in the condensed phase as stiff, extended ribbons, like the galactomannans. The synergy between LBG and xanthan gum is the most effective and results in a firm, thermoreversible gel.[5] A synergic behavior was observed even in dilute gum solution.[52]

Rocks was the first to report the synergistic interaction between the two polysaccharides, observing the formation of a thermally reversible gel.[53] Subsequent studies indicated that the interaction occurs between the side chains of xanthan and the backbone of LBG as in a lock-and-key model, in which one xanthan chain could associate with one, two, or more locust bean gum molecules.[14,54,55] A study using X-ray diffraction suggested the need to denature xanthan at temperatures exceeding the helix-coil transition temperature for binding between both polymers to occur, leading to strong elastic gels.[56] Furthermore, it was reported that stronger gels, in terms of hardness and elastic modulus, were obtained when the two polymers were mixed in the same weight ratio. The same research group also suggested that the association between xanthan and LBG occurred because of disordered xanthan chains.[57] In contrast, a work with calorimetry and rheological methods revealed that the association between the polysaccharides was triggered by xanthan conformational changes.[58] The interaction between the polymers was later reported to be mediated by two distinct mechanisms. One takes place at room temperature, results in weak gels, and presents little dependence upon the galactose content. In turn, the second mechanism requires significant heating of the polymeric mixture and results in stronger gels, which formation is highly dependent upon the specific galactomannan composition.[59] There are reports on the dependence of gelation upon the temperature of reaction and the specific M/G ratio of galactomannan. For low galactose contents, such as that of LBG, interactions have been described at temperatures usually higher than 45°C. In addition, these interactions do not depend on the ionic concentration of the solutions and are suggested to involve xanthan chains in their ordered as well as disordered conformation. As the number of disordered xanthan chains depends on the total ionic concentration, the occurrence of interactions is strongly affected by the external salt concentration and also by ionic impurities present in the solution or in galactomannan samples, such as proteins.[14]

Another study demonstrated that the stability of xanthan helical structure or xanthan chain flexibility played a critical role in the interaction with LBG. It was shown that the destabilization of xanthan helical structure by deacetylation and heating facilitated the intermolecular binding between xanthan and LBG.[60] However, a study in dilute solution conditions suggested that the synergy is a result of a conformational change of the complex xanthan-LBG, in which LBG should play a significant role.[52]

A more recent work studied the possibility of modulating the gel mechanical properties varying the polymeric ratios and the temperature of reaction, the latter being known to affect xanthan chain conformation. It was observed that a LBG/xanthan ratio of 1:1 always produces a gel, while a ratio of 1:3 results in a weak gel at 75°C and a ratio of 1:9 never results in the formation of a real gel.[61] These results indicated that the properties of the complex polysaccharide gel might be tuned by varying the preparation temperature and/or the weight ratio between the two polymers.

As can be seen, information on LBG/xanthan gum synergy and gelling mechanism is varied and somewhat contradictory. In fact, although many efforts continue to elucidate the interaction, with some recent works providing new evidences, a wide debate is still open in the subject.

The synergy between both polymers is so effective that gels have been proposed in pharmaceutical applications for slow release purposes and tablet formulations already exist comprising of these polysaccharides.[62,63] The specific approaches will be detailed in the section addressing biopharmaceutical applications of LBG.

Synergy with k-carrageenan

The gelation of k-carrageenan is preceded by a coil–helix transition followed by aggregation and network formation. The coil–helix transition is known to be influenced by the presence of electrolytes, salt concentration, temperature, and polymer length.[54,64,65] In addition, it has been reported that k-carrageenan gels are prone to syneresis.[66]

The first studies on the polymeric interaction between LBG and k-carrageenan suggested that k-carrageenan helix interacted with unsubstituted regions of LBG,[67] but several contradictory studies were published after that. Nevertheless, it seems now to be accepted that the enhanced gel properties observed when the two polysaccharides are mixed, are a consequence of particular interactions occurring between the macromolecules. Specific junction zones between the chains of both polymers were reported to be established, resulting in increased gel strength and elasticity and reduced tendency to syneresis.[65,68,69] However, it was suggested that above a total polysaccharide concentration of 8–10 g/L, self-association of LBG chains could also take place.[68]

By comparison with gels formed only with k-carrageenan, it was suggested that LBG interferes with the gel structure by the formation of a secondary network.[70] The synergic effect has been shown to be affected by the polymers molecular weight, as well as by LBG degree of substitution, where the lowest degree of galactose substitution is reported to be more effective in gel formation.[71]

A study based on dynamic viscoelastic measurements and compression tests suggests that LBG adheres non-specifically to k-carrageenan network.[66]

Although less applied than the previous mixture of xanthan gum and LBG, this synergy of carrageenan and LBG served as the basis for the formulation of gel beads for encapsulation and stabilization of lactic acid bacteria[72] and microparticles for sustained release of gentamicin.[73]

Potential for Locust Bean Gum in vivo Biodegradation

When the main goal is to develop polymeric-based materials for biopharmaceutical applications, the in vivo biodegradability of the used polymers is of utmost importance, since their elimination by the organism upon administration is required without the need for additional interventions. Biodegradation of natural polymers is known to be carried out by the action of enzymes, microorganisms and pH action, entailing complex biological, physical, and chemical processes. These processes result in the breakdown of polymer chains, leading to the modification of properties such as molecular weight and solubility.

In which concerns LBG, its biodegradation is expected to be mainly driven by enzymatic activity, as several enzymes exist in the organism that might cleave LBG macromolecule. Oral administration is perhaps the route that most easily ensures an effective degradation of the polysaccharide. This is due to the presence of β-mannanase in the human colonic region[38,74] thus serving as the basis for the development of several strategies of colonic drug delivery that include LBG, as will be detailed in the section of LBG application in buccal drug delivery. As explained before in the section of Molecular Weight and Industrial Depolymerization, this enzyme acts on β-(1,4)-D links of mannose chains, converting these units into mannobiose, mannotriose, and galactomannobiose.[39,40] As observed in Figure 3, the complete degradation of LBG involves two other enzymes, β-mannosidase and α-galactosidase, which act, respectively, on mannose and galactose residues, producing d-mannose and D-galactose. These enzymes were also detected in human fecal contents,[75] reinforcing the potential of this polysaccharide in colonic delivery applications, but also ensuring its degradation upon any modality of oral administration. Actually, there are reports on the in vivo degradation of LBG mediated by colonic bacteria,[76] an effect that has been specifically attributed to bacteroides and ruminococci.[75]

Biopharmaceutical Applications of Locust Bean Gum

Many natural polymers have already demonstrated effectiveness in food, cosmetic, and pharmaceutical applications. The natural origin, as well as some specific individual characteristics, is an asset to make products more appealing to consumers. In the field of drug delivery many efforts have been devoted, in the last decades, to the development of appropriate delivery systems that avoid or minimize side effects, while improving the therapeutic efficacy. The application of natural polymers in pharmaceutical formulations is extremely varied, comprising the production of solid monolithic matrix systems, implants, films, beads, microparticles, nanoparticles, inhalable, and injectable systems, as well as viscous liquid and gel formulations. Within these dosage forms, polymeric materials have different functions such as binders, matrix formers, drug release modifiers, coatings, thickeners, or viscosity enhancers, stabilizers, disintegrators, solubilizers, emulsifiers, suspending agents, gelling agents, and bioadhesives.[4]

Owing to particular features of LBG specifically related with its gelling capacity and synergies with other polysaccharides, a growing interest is being observed regarding its biopharmaceutical use. Our group tested the effect of LBG on Caco-2 cell viability by the thiazolyl blue tetrazolium bromide (MTT) assay, finding very acceptable levels of cell viability between 73% and 81% for LBG concentrations varying between 0.1 and 1 mg/mL (data not shown), which are considered quite realistic for drug delivery applications. These observations were rather expected, as no detrimental effects are known to be obtained from compounds that are composed of basic sugar units.

The most usual biopharmaceutical application of LBG is in the formulation of oral delivery systems, although some works report its use in topical, ocular, buccal and colonic delivery, as will be described in the following sections. In this manner, the almost total of formulations is based on tablets although in a few cases hydrogels and multiparticulate systems are described.

LBG bioactivity

Several works describe the potential of LBG as a bioactive material. In 1983, LBG was referred for the first time as having a hypolipidemic effect, decreasing low density lipoprotein (LDL) cholesterol[77] as a consequence of the high content of insoluble fiber. Several subsequent studies confirmed that ability,[78–80] demonstrating the beneficial effects of LBG in the control of hypercholesterolemia. This potential benefit has inclusive led some authors to propose a daily consumption of food products enriched with the fiber.[80] In addition, it was also demonstrated that the polymer could reduce the rate of hepatic synthesis of cholesterol, although other galactomannans were more efficient in that task.[78] LBG has also been proposed for the treatment of diabetes.[81,82]

Furthermore, due to the high gelling ability and the fact that the formed gel is not assimilated by the gastrointestinal tract, ingestion causes a sensation of satiety resulting in decreased absorption of nutrients, thus rendering LBG adequate for inclusion in dietary products.[20,49] Indeed, a formulation of LBG-based capsules is available in the market for appetite suppression (Carob gum - Arkopharma Arkocápsulasâ).

LBG application in oral drug delivery

Among the various routes of administration, the oral has been the most convenient and commonly used in drug delivery. The application of LBG in oral delivery systems is mainly focused on its use as matrix forming material in tablets, benefiting from the fact that polysaccharides are generally considered to play an important role in drug release mechanisms from matrixes.[83] In these systems, usually intended to provide systemic drug absorption, LBG contributes with its swelling ability to afford a controlled release of the drug. Moreover, in most cases it is observed that the association of LBG with a second polymer affords an improved effect, benefiting from specific interactions occurring between the polymers.

To our knowledge, the first work reporting LBG application in tablet formulation as single polysaccharide excipient dates to 1998, when Sujja-areevath et al. reported the production of sodium diclofenac mini-matrixes containing 49.5% LBG. Optimized tablets had a drug/polymer ratio of 1/1, as higher ratios led to loss of matrix integrity. The formulation containing LBG evidenced lower swelling (50% in 6 h) than those containing xanthan (250% in 6 h) or karaya gum (150% in 6 h) and the swelling rate was observed to approximately follow Fick's diffusion law. However, drug release kinetics and polymer erosion were non-Fickian and, as compared with the other gums, tablets based on LBG displayed the fastest erosion in a phosphate buffer pH 7.0 (65% versus 45% and 25% for xanthan and karaya gum, respectively).[16] Another work consisted in the design of an LBG matrix tablet for the incorporation and release of theophylline and myoglobin. The tablet was further cross-linked with glutaraldehyde in an attempt to provide the network with the potential for an effective controlled release. However, that effect was not observed as release rate is similar in the presence and absence of the cross-linker (80% in 8 h). This observation is justified by the fact that LBG has only a few side chains and only a reduced number of cross-linkages take place within the polymer network which is not enough to affect the drug release mechanism. In contrast, tablets composed of guar gum, which has a higher number of side chains and thus allows stronger cross-linking, evidence a strong difference in drug release profile between cross-linked and non-cross-linked matrixes.[25] In a different approach, but still in the ambit of using LBG as single polysaccharide in the formulations, two very recent works revealed the ability of LBG to act as superdisintegrant in orodispersible tablets. One formulation consisted in nimesulide tablets, in which the incorporation of 10% LBG resulted in a disintegration time of 13 seconds. This time doubled if a standard superdisintegrant, cross-carmellose sodium, was used instead of LBG.[21] The other formulation comprised ofloxacin-loaded Eudragit® microspheres which were later used to prepare orodispersible tablets using LBG. The polysaccharide was used in a concentration varying between 2.5 and 10% and the observed disintegration time varied between 12 and 20 seconds, decreasing with the increase of LBG concentration. Ofloxacin was first encapsulated in microspheres in order to mask its bitter taste.[84]

Even before being used as single polysaccharide excipient, a tablet formulation called TIMERx® was designed using a combination of LBG and xanthan gum, being presented as a novel polysaccharide-based controlled release matrix technology, although this first work was just a preliminary exploration, providing the system characterization but without associating a drug to the system.[85] Later on, TIMERxâ was demonstrated to have controlled release potential both in vitro and in vivo, which was attributed to the high synergy between the polymers. At a LBG/xanthan gum ratio of 1/1 and at 50% polymer concentration, with cumulative presence of 50% glucose, a strong gel is obtained in contact with water.[86] The technology is nowadays commercially available, as a product from Penwest Pharmaceuticals, and was first developed for twice-a-day dosing of oxymorphone in patients with moderate to severe pain. A very complete review on TIMERx technology and its applications is available on Staniforth and Baichwal[86] and a very recent general review on chronotherapeutics is offered by Sunil et al.[87]

The combination of LBG with other polysaccharides is a frequent approach in the design of systems, in many cases benefiting from material synergies, as in the previous example. In this context, LBG/xanthan gum hydrogels were loaded with myoglobin, being then freeze-dried and compressed to produce tablets. Release behavior was mainly governed by LBG, which inhibits drug diffusion from the matrix. Even when a LBG/xanthan gum ratio of 1/9 was used, only 44% of the drug was released in water in 24 h.[63] In another study, LBG by itself was reported to not control the release of diltiazem hydrochloride from tablets, but the controlled release effect was observed upon the addition of karaya gum to the matrix (LBG/karaya gum ratio of 1/1). However, this effect demanded the presence of the polymeric mixture in a concentration which doubles that of the drug (drug/polymer ratio = 1/2).[88]

A different approach consists in the production of multi-layered matrix tablets, which also provide modified release behavior. These dosage forms are drug delivery devices comprising of a matrix core containing the active solute and one or more modulating layers, which are incorporated during tableting process. The modulating layers enable controlling the rate of hydration of the matrix core, thereby restricting the surface area available for diffusion of the drug and at the same time controlling solvent penetration rate.[89,90] In this context, sodium diclofenac tablets with matrix based on LBG, xanthan gum, or a 1:1 mixture of both polymers were produced. These matrix tablets released more than 90% of the drug in 12 h, the system containing LBG evidencing the fastest release. The addition of a triple external layer of carboxymethyl cellulose, which acted as release retardant for the hydrophilic matrix core, controlled diclofenac release, which was of approximately 70% for LBG core tablets in the same period of time.[91]

Considering the set of works available in the ambit of LBG tablet formulation for oral drug delivery, some contradictory results are found, mainly related to the capacity of LBG to provide a controlled release effect. This could be either related with differences in the used LBG molecules, considering different providers, or with the fact that secondary and tertiary components are also included in some formulations, affecting their behavior and making direct comparisons a difficult task.

Notwithstanding the prevalence of tablet formulations, other different approaches have been described. Solid dispersions of LBG and lovastatin were formulated to increase drug solubility. LBG was previously submitted to a thermal treatment to decrease its viscosity, which was reported to not affect its swelling capacity. This treatment had, by itself, a clear effect on lovastatin solubility, which was tested for 2 h in pH 7. Lovastatin released approximately 53% from native LBG solid dispersion and 65% from solid dispersions formulated with treated LBG. The solubility improvement is remarkable, taking into account that unformulated lovastatin only released 35% in the same period. Different methods of solid dispersion preparation were also tested, and the method of modified solvent evaporation demonstrated the better results, followed by spray-drying. Solid dispersions tested in vivo also demonstrated better therapeutic results as compared to unformulated lovastatin.[92] In another study, hydrogels prepared with LBG and xanthan gum were formulated to control the release of prednisolone. An increase in gum concentration resulted in decreased drug release rate from the hydrogels, suggesting that the drug diffusion was mainly controlled by the density of the three-dimensional network structure of the matrix. Glycerin and sucrose were tested as hydrogel additives, demonstrating to provide a significant decrease in drug release rate.[93]

A rather different approach concerns the use of multiparticulate systems, namely microspheres. LBG/alginate[94] and LBG-xanthan gum/alginate[95] microspheres loaded with sodium diclofenac were prepared by ionic cross-linking mediated by calcium. Drug association efficiency was above 90% and demonstrated to increase with increasing amounts of LBG or the mixture of gums. In both cases microspheres displayed a controlled release profile for 12 h in simulated gastric (pH 1.2; 2 h) and intestinal (pH 7.2; 10 h) fluids. Unfortunately, both articles are very scarce in details and discussion, and it was not possible to conclude on the more adequate formulation for diclofenac delivery and release.

LBG application in buccal drug delivery

The administration of drugs through the buccal mucosa offers two major advantages, which include avoiding pre-systemic elimination within the gastrointestinal tract and first-pass hepatic effect.[96,97] Therefore, buccal drug delivery mainly envisages improving the bioavailability of poorly absorbable drugs in the intestinal area.[98] One of the most important features to be exhibited by buccal delivery systems is a strong mucoadhesiveness, which is usually obtained using mucoadhesive polymers.[97,99] LBG has been reported to have mucoadhesive profile[97] although not as strong as other polysaccharides like chitosan.

Only two works deal with the application of LBG in the design of buccal delivery systems, in both cases involving a combination with a second polysaccharide. Tablets containing LBG or a mixture of LBG and xanthan gum as matrix materials were produced in order to improve the bioavailability of metoprolol, by avoiding an extensive first-pass effect of the drug. Formulations containing only LBG resulted in progressive release of the drug, with 7.5% of polymer leading to 98% release in 45 min. An increase to 15% LBG resulted in decreased release rate, registering approximately 45% in the same period. Combinations of xanthan gum and locust bean gum revealed more effective for tablet formulation, considering physical integrity, hardness and mucoadhesion strength. Tablets with LBG/xanthan gum ratio of 2:1 exhibited complete drug release in 45 min, as desired, but also poor drug permeation. To overcome this limitation, 1% sodium lauryl sulfate was incorporated in the formulation, resulting in improved drug permeation across porcine buccal mucosa.[100]

The second study also uses LBG in association with another polymer, comparing the bioavailability of propranolol hydrochloride formulated in LBG/chitosan tablets of different ratios (2/3, 3/2 and 4/1) administered to human volunteers. All buccal formulations improved drug bioavailability (1.3, 2.1 and 2.3 fold, respectively) as compared to the oral administration of a similar formulation. Naturally, tablets of ratio 2/3 were those exhibiting higher mucoadhesion, because of the highest chitosan content, and were also those evidencing the more complete release (98% in 10 h, as compared to 92% and 90% of formulations 3/2 and 4/1, respectively) although differences are not very relevant.[101]

LBG application in colonic drug delivery

The rationale for the use of polysaccharides in the production of delivery systems aimed at colonic delivery of drugs mainly relies on the presence of large amounts of polysaccharidases in the human colon. This is a consequence of the fact that this region is particularly colonized by a great number of bacteria, which produce many enzymes.[75,102]

Apart from the obvious application in providing a local therapeutic effect, for instance in inflammatory colonic diseases, systemic colonic delivery of drugs is also an option, especially for those drugs observing difficult absorption from the upper gastrointestinal tract. This possibility derives from the fact that the colon lacks various digestive enzymes present in the upper regions, mainly proteinases, thus possessing a less hostile environment in comparison with the stomach and small intestine.[103,104] As mentioned in Section 5, it is known that β-mannanase and other relevant enzymes are present in the human colon, ensuring the in vivo degradation of LBG.[38,74,75] In this context, bacterial species reported to be involved in LBG degradation are bacteroides and ruminococci.[75,105]

A first study on LBG application in colonic drug delivery systems consisted in the production of butanediol diglycidylether cross-linked LBG films, used as coating in theophylline tablets. The films evidenced very high swelling ability (300–500%) and were shown to undergo degradation by colonic microflora, potentiating an application in colonic delivery. However, mechanical instability of the films was observed, especially at higher coating quantities, thereby suggesting their non-suitability for application in colonic carrier production.[106]

Another study investigated the potential of LBG/chitosan mixtures to be used as coating materials, in order to provide protection from the physiological environment of stomach and small intestine, while permitting degradation by colonic bacterial enzymes, enabling drug release. Different LBG/chitosan ratios were studied and applied as coating over mesalazine core tablets. LBG capacity to hydrate and form a viscous gel layer was intended to provide a slower dissolution towards the core tablet. The ratio 4/1 demonstrated the most adequate behavior, showing cumulative release of 98% after 26 h incubation, which corresponded to 2 h HCl, 3 h in pH 7.4 buffer and 21 h in pH 6.8 PBS containing 4% (w/v) rat caecal contents. In vivo studies conducted in humans showed that drug release only initiated after 5 h, which corresponds to the transit time of the small intestine.[102]

LBG application in ocular drug delivery

A unique work reports the use of LBG in the formulation of a drug delivery system to the eye. LBG/i-carrageenan microparticles encapsulating gentamicin were prepared by emulsification, to be further incorporated in a polyvinyl alcohol gel that is applied on the ocular surface. Formulations without LBG showed an initial burst release within the first 6 h, which decreased by more than 50% by the addition of 10% LBG.[73] Unfortunately, no further studies were reported on this system to allow a larger vision on its potential.

LBG application in topical drug delivery

The use of LBG was also described in a formulation for topical application. The authors prepared a hydrogel with a LBG/xanthan gum ratio of 1/1, which was used to incorporate niosomes.[107] These are non-ionic surfactant vesicles, which offer several advantages over conventional liposomes, including higher chemical stability, lower costs, and greater availability of materials.[108,109] Niosomes were loaded with several distinct drugs, such as calcein, ibuprofen, and caffeine. The subsequent incorporation of niosomes on the hydrogel provided a protective effect on vesicle integrity and a slow release of the drugs from the polysaccharide system up to 50 h.[107]

Conclusions

Excipients have traditionally been included in drug formulations as inert substances whose role mainly relies on aiding the manufacturing process. Nevertheless, in the last decades they have been increasingly included in dosage forms to fulfill specialized functions aimed at improving drug delivery. LBG is being used in biopharmaceutical applications with several distinct functions, varying from controlled release excipient to tablet disintegrant. In most cases, the polysaccharide is associated with a second material, benefiting from strong synergies, and fields of application are varied, comprising oral, buccal, and colonic delivery, but also ocular and topical applications have been described. A substantial amount of research remains to be conducted to unveil the real potential the polysaccharide might possess. Considering the available works, it seems to be particularly interesting in the case of synergies established with other polysaccharides, namely xanthan gum and carrageenan.

Acknowledgments

This work was supported by National Portuguese funding through FCT - Foundation for Science and Technology, project PEst-OE/EQB/LA0023/2011 and PTDC/SAU-FCF/100291/2008.

Footnotes

Source of Support: This work was supported by National Portuguese funding through FCT – Foundation for Science and Technology, project PEst-OE/EQB/LA0023/2011 and PTDC/SAU-FCF/100291/2008.

Conflict of Interest: None declared.

References

  1. Yu L, Dean K, Li L. Polymer blends and composites from renewable resources. Prog Polym Sci. 2006;31:576–602.
  2. Malafaya P, Silva G, Reis R. Natural–origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering application. Adv Drug Deliv Rev. 2007;59:207–33. [PubMed]
  3. Pollard M, Kelly R, Fischer P, Windhab E, Eder B, Amadò R. Investigation of molecular weight distribution of LBG galactomannan for flours prepared from individual seeds, mixtures, and commercial samples. Food Hyd. 2008;22:1596–606.
  4. Beneke C, Viljoen A, Hamman J. Polymeric plant-derived excipients in drug delivery. Molecules. 2009;14:2602–20. [PubMed]
  5. Copetti G, Grassi M, Lapasin R, Pricl S. Synergistic gelation of xanthan gum with locust bean gum: A rheological investigation. Glycoconjugate J. 1997;14:951–61. [PubMed]
  6. d’Ayala GG, Malinconico M, Laurienzo P. Marine derived polysaccharides for biomedical applications: Chemical modification approaches. Molecules. 2008;13:2069–106. [PubMed]
  7. Laurienzo P. Marine polysaccharides in pharmaceutical applications: An overview. Mar Drugs. 2010;8:2435–65. [PMC free article] [PubMed]
  8. Rinaudo M. Main properties and current applications of some polysaccharides as biomaterials. Polym Int. 2008;57:397–430.
  9. Rowe R, Sheskey P, Owen S. Handbook of Pharmaceutical Excipients. 5th ed. London: Pharmaceutical Press; 2006.
  10. Bouzouita N, Khaldi A, Zgoulli S, Chebil L, Chekki R, Chaabouni M, et al. The analysis of crude and purified locust bean gum: A comparison of samples from different carob tree populations in Tunisia. Food Chem. 2007;101:1508–15.
  11. Dakia P, Blecker C, Robert C, Whatelet B, Paquot M. Composition and physicochemical properties of locust bean gum extracted from whole seeds by acid or water dehulling pre-treatment. Food Hyd. 2008;22:807–18.
  12. Andrade C, Azero E, Luciano L, Gonçalves M. Solution properties of the galactomannans extracted from the seeds of Caesalpinia pulcherrima and Cassia javanica: Comparison with locust bean gum. Int J Biol Macromol. 1999;26:181–5. [PubMed]
  13. Smith B, Bean S, Schober T, Tilley M, Herald T, Aramouni F. Composition and molecular weight distribution of carob germ protein fractions. J Agric Food Chem. 2010;58:7794–800. [PubMed]
  14. Bresolin TM, Milas M, Rinaudo M, Reicher F, Ganter JL. Role of galactomannan composition on the binary gel formation with xanthan. Int J Biol Macromol. 1999;26:225–31. [PubMed]
  15. Kök M, Hill S, Mitchell J. A comparison of the rheological behaviour of crude and refined locust bean gum preparations during thermal processing. Carbohyd Polym. 1999;38:261–5.
  16. Sujja-areevath J, Munday D, Cox P, Khan K. Relationship between swelling, erosion and drug release in hydrophilic natural gum mini-matrix formulations. Eur J Pharm Sci. 1998;6:207–17. [PubMed]
  17. Pollard M, Kelly R, Wahl C, Fischer KP, Windhab E, Eder B, et al. Investigation of equilibrium solubility of a carob galactomannan. Food Hyd. 2007;21:683–92.
  18. Hart R. Carob-seed gum: Its use for the detection and estimation of boric acid and borates. Ind Eng Chem. 1930;2:329–31.
  19. Barry J, Halsey G. Dilute solution properties of a neutral polysaccharide. J Phys Chem. 1963;67:2821–6.
  20. Urdiain M, Doménech-Sánchez A, Albertí S, Benedí V, Rosselló J. Identification of two additives, locust bean gum (E-410) and guar gum (E- 412), in food products by DNA-based methods. Food Addit Contamin. 2004;21:619–25. [PubMed]
  21. Malik K, Arora G, Singh I. Locust bean gum as superdisintegrant - Formulation and evaluation of nimesulide orodispersible tablets. Polym Med. 2011;41:17–28. [PubMed]
  22. Daas P, Grolle K, van Vliet T, Schols H, de Jongh H. Toward the recognition of structure-function relationships in galactomannans. J Agric Food Chem. 2002;50:4282–9. [PubMed]
  23. Mathur V, Mathur N. Fenugreek and other less known legume galactomannan-polysaccharides: Scope for developments. J Sci Ind Res. 2005;64:475–81.
  24. Picout D, Ross-Murphy S, Jumel K, Harding S. Pressure cell assisted solution characterization of polysaccharides. 2. Locust bean gum and tara gum. Biomacromol. 2002;3:761–7. [PubMed]
  25. Coviello T, Alhaique F, Dorigo A, Matricardi P, Grassi M. Two galactomannans and scleroglucan as matrices for drug delivery: Preparation and release studies. Eur J Pharm Biopharm. 2007;66:200–9. [PubMed]
  26. Mudgil D, Barak S, Khatkar B. Guar gum: Processing, properties and food applications - A review 2011; doi: 10. J Food Sci Technol. 2011 doi: 10.1007/s13197-011-0522-x. [PMC free article] [PubMed]
  27. Alves MM, Antonov YA, Gonçalves MP. The effect of structural features of gelatin on its thermodynamic compatibility with locust bean gum in aqueous media. Food Hyd. 1999;13:157–66.
  28. Richarsdon P, Willmer J, Foster T. Dilute properties of guar and locust bean gum in sucrose solutions. Food Hyd. 1998;12:339–48.
  29. Garcia-Ochoa F, Casas J. Viscosity of locust bean (Ceratonia siliqua) gum solutions. J Sci Food Agric. 1992;59:97–100.
  30. Braz L, Grenha A, Ferreira D, Rosa da Costa A, Sarmento B. Locust bean gum derivatives for nanometric drug delivery. Rev Port Farm. 2011;52(6 Suppl):127–8.
  31. Vaheed H, Shojaosadati S, Galip H. Evaluation and optimization of ethanol production from carob pod extract by Zymomonas mobilis using response surface methodology. J Ind Microbiol Biotechnol. 2011;38:101–11. [PubMed]
  32. Grössl M, Harrison S, Kaml I, Kenndler E. Characterisation of natural polysaccharides (plant gums) used as binding media for artistic and historic works by capillary zone electrophoresis. J Chromatogr A. 2005;1077:80–9. [PubMed]
  33. Naganagouda K, Salimath P, Mulimani V. Purification and characterization of endo-β-1,4 mannanase from Aspergillus niger gr for application in food processing industry. J Microbiol Biotechnol. 2009;19:1184–90. [PubMed]
  34. Talbot G, Sygusch J. Purification and characterization of thermostable beta-mannanase and alpha-galactosidase from Bacillus stearothermophilus. Appl Environ Microbiol. 1990;56:3505–10. [PMC free article] [PubMed]
  35. Blibech M, Ghorbel R, Fakhfakh I, Ntarima P, Piens K, Bacha A, et al. Purification and characterization of a low molecular weight of β-mannanase from Penicillium occitanis Pol6. Appl Biochem Biotechnol. 2010;160:1227–40. [PubMed]
  36. Wu M, Tang C, Li J, Zhang H, Guo J. Bimutation breeding of Aspergillus niger strain for enhancing β-mannanase production by solid-state fermentation. Carbohyd Re s. 2011;346:2149–55. [PubMed]
  37. McCleary B, Matheson N. Action patterns and substrate-binding requirements of β-D-mannanase with mannosaccharides and mannan-type polysaccharides. Carbohyd Res. 1983;119:191–219.
  38. Alonso-Sande M, Teijeiro-Osorio D, Remuñán-López C, Alonso MJ. Glucomannan, a promising polysaccharide for biopharmaceutical purposes. Eur J Pharm Biopharm. 2009;72:453–62. [PubMed]
  39. Kurakake M, Komaki T. Production of β-mannanase and β-mannosidase from Aspergillus awamori K4 and their properties. Curr Microb. 2001;42:377–80. [PubMed]
  40. Civas A, Eberhard R, Le Dizet P, Petek F. Glycosidases induced in Aspergillus tamarii: Secreted α-D-galactosidase and β-D-mannanase. Biochem J. 1984;219:857–63. [PMC free article] [PubMed]
  41. Kurakake M, Sumida T, Masuda D, Oonishi S, Komaki T. Production of galacto-manno-oligosaccharides from guar gum by β-Mannanase from Penicillium oxalicum SO. J Agric Food Chem. 2006;54:7885–89. [PubMed]
  42. Ademark P, Varga A, Medve J, Harjunpää V, Drakenberg T, Tjerneld F, et al. Softwood hemicellulose-degrading enzymes from Aspergillus niger: Purification and properties of a β-mannanase. J Biotechnol. 1998;63:199–210. [PubMed]
  43. Kotiguda G, Kapnoor S, Kulkarni D, Mulimani V. Degradation of raffinose oligosaccharides in soymilk by immobilized alpha-galactosidase of Aspergillus oryzae. J Microbiol Biotechnol. 2007;17:1430–6. [PubMed]
  44. Ferreira J, Reis A, Guimarães V, Falkoski D, Fialho L, de Rezende S. Purification and characterization of Aspergillus terreus α-galactosidases and their use for hydrolysis of soymilk oligosaccharides. Appl Biochem Biotechnol. 2011;164:1111–25. [PubMed]
  45. Pinheiro AC, Bourbon AI, Rocha C, Ribeiro C, Maia JM, Gonçalves MP, et al. Rheological characterization of κ-carrageenan/galactomannan and xanthan/galactomannan gels: Comparison of galactomannans from non-traditional sources with conventional galactomannans. Carbohyd Polym. 2011;83:392–9.
  46. Srivastava M, Kapoor V. Seed galactomannans: An overview. Chem Biodiv. 2005;2:295–317. [PubMed]
  47. Sewall C. Gelling interactions of phycocolloids extracted from red algae with a galactomannan from locust bean and a glucomannan from konjac tuber. J Appl Phycol. 1992;4:347–51.
  48. Wang J, Somasundaran P. Study of galactomannose interaction with solids using AFM, IR and allied techniques. J Colloid Interf Sci. 2007;309:373–83. [PubMed]
  49. Dakia PA, Wathelet B, Paquot M. Isolation and chemical evaluation of carob (Ceratonia siliqua L.) seed germ. Food Chem. 2007;102:1368–74.
  50. Goycoolea F, Morris E, Gidley M. Viscosity of galactomannans at alkaline and neutral pH: Evidence of “hyperetanglement” in solution. Carbohyd Polym. 1995;27:69–71.
  51. Becker A, Katzen F, Pühler A, Ielpi L. Xanthan gum biosynthesis and application: A biochemical/genetic perspective. Appl Microbiol Biotechnol. 1998;50:145–52. [PubMed]
  52. Higiro J, Herald TJ, Alavi S. Rheological study of xanthan and locust bean gum interaction in dilute solution. Food Res Int. 2006;39:165–75.
  53. Rocks J. Xanthan gum. Food Technol. 1971;25:476–83.
  54. Morris E, Rees D, Robinson G, Young G. Competitive inhibition of interchain interactions in polysaccharide systems. J Mol Biol. 1980;138:363–74. [PubMed]
  55. Tako M, Asato A, Nakamura S. Rheological aspects of the intermolecular interaction between xanthan and locust bean gum in aqueous media. Eur Polym J. 1984;48:2995–3000.
  56. Cairns P, Miles MJ, Morris VJ, Brownsey GJ. X-Ray fibre-diffraction studies of synergistic, binary polysaccharide gels. Carbohyd Res. 1987;160:411–23.
  57. Cairns P, Miles M, Morris V. Intermolecular bonding of xanthan gum and carob gum. Nature. 1986;322:89–90.
  58. Williams P, Clegg S, Day D, Phillips G, Nishinari K. Mixed gels formed with konjac mannan and xanthan gum. In: Dickinson E, editor. Food polymers, gels and colloids. Cambridge: Royal Society of Chemistry; 1991. pp. 339–48.
  59. Mannion R, Melia C, Launay B, Cuvelier G, Hill S, Harding S, et al. Xanthan/locust bean gum interactions at room temperature. Carbohyd Polym. 1992;19:91–7.
  60. Wang F, Wang YJ, Sun Z. Conformational role of xanthan in its interaction with locust bean gum. J Food Sci. 2002;67:2609–14.
  61. Sandolo C, Bulone D, Mangione MR, Margheritelli S, Di Meo C, Alhaique F, et al. Synergistic interaction of locust bean gum and xanthan investigated by rheology and light scattering. Carb Polym. 2010;82:733–41.
  62. Vendruscolo CW, Andreazza IF, Ganter JL, Ferrero C, Bresolin TM. Xanthan and galactomannan (from M.scabrella) matrix tablets for oral controlled delivery of theophylline. Int J Pharm. 2005;296:1–11. [PubMed]
  63. Sandolo C, Coviello T, Matricardi P, Alhaique F. Characterization of polysaccharide hydrogels for modified drug delivery. Eur Biophys J. 2007;36:693–700. [PubMed]
  64. Lundin L, Hermansson AM. Influence of locust bean gum on the rheological behaviour and microstructure of K-k-carrageenan. Carbohyd Polym. 1995;28:91–9.
  65. Chronakis IS, Borgström J, Piculell L. Conformation and association of κ-carrageenan in the presence of locust bean gum in mixed NaI/CsI solutions from rheology and cryo-TEM. Int J Biol Macromol. 1999;25:317–28. [PubMed]
  66. Andrade CT, Azero EG, Luciano L, Gonçalves MP. Rheological properties of mixtures of κ-carrageenan from Hypnea musciformis and galactomannan from Cassia javanica. Int J Biol Macromol. 2000;27:349–53. [PubMed]
  67. Dea IC, McKinnon AA, Rees DA. Tertiary and quaternary structure in aqueous polysaccharide systems which model cell wall cohesion: Reversible changes in conformation and association of agarose, carrageenan and galactomannans. J Mol Biol. 1972;68:153–72. [PubMed]
  68. Turquois T, Doublier J, Taravel F, Rochas C. Synergy of the kappa-carrageenan-carob galactomannan blend inferred from rheological studies. Int J Biol Macromol. 1994;16:105–7. [PubMed]
  69. Lundin L, Hermansson AM. Multivariate analysis of the influences of locust bean gum, αs-casein, κ-casein on viscoelastic properties of Na-κ-carrageenan gels. Food Hyd. 1998;12:175–87.
  70. Fernandes PB, Gonçalves MP, Doublier JL. Effect of galactomannan addition on the thermal behaviour of κ-carrageenan gels. Carbohyd Polym. 1992;19:261–9.
  71. Fernandes PB, Gonçalves MP, Doublier JL. A rheological characterization of kappa-carrageenan/galactomannan mixed gels: A comparison of locust bean gum samples. Carbohyd Polym. 1991;16:253–74.
  72. Arnaud J, Lacroix C, Castaigne F. Counter-diffusion of lactose and lactic acid in kappa-carrageenan/locust bean gum gel beads with or without entrapped lactic acid bacteria. Enzyme Microb Technol. 1992;14:715–24. [PubMed]
  73. Suzuki S, Lim JK. Microencapsulation with carrageenan-locust bean gum mixture in a multiphase emulsification technique for sustained drug release. J Microencapsulation. 1994;11:197–203. [PubMed]
  74. Nakajima N, Matsuura Y. Purification and characterization of konjac glucomannan degrading enzyme from anaerobic human intestinal bacterium, Clostridium butyricum-Clostridium beijerinckii group. Biosci Biotechnol Biochem. 1997;61:1739–42. [PubMed]
  75. Jain A, Gupta Y, Jain S. Perspectives of biodegradable natural polysaccharides for site-specific drug delivery to the colon. J Pharm Pharm Sci. 2007;10:86–128. [PubMed]
  76. Bauer A, Kesselhut A. Novel pharmaceutical excipients for colon targeting. STP Pharm Sci. 1995;5:54–9.
  77. Zavoral J, Hannan P, Fields D, Hanson M, Frantz I, Kuba K, et al. The hypolipidemic effect of locust bean gum food products in familial hypercholesterolemic adults and children. Am J Clin Nut. 1983;38:285–94. [PubMed]
  78. Evans AJ, Hood RL, Oakenfull DG, Sidhu GS. Relationship between structure and function of dietary fibre: A comparative study of the effects of three galactomannans on cholesterol metabolism in the rat. Br J Nutr. 1992;68:217–29. [PubMed]
  79. Ruiz-Roso B, Quintela J, de la Fuente E, Haya J, Pérez-Olleros L. Insoluble carob fiber rich in polyphenols lowers total and LDL cholesterol in hypercholesterolemic sujects. Plant Foods Human Nut. 2010;65:50–6. [PubMed]
  80. Zunft HJ, Lüder W, Harde A, Haber B, Graubaum HJ, Koebnick C, et al. Carob pulp preparation rich in insoluble fibre lowers total and LDL cholesterol in hypercholesterolemic patients. Eur J Nut. 2003;42:235–42. [PubMed]
  81. Brennan CS. Dietary fibre, glycaemic response, and diabetes. Mol Nut Food Res. 2005;49:560–70. [PubMed]
  82. Tsai A, Peng B. Effects of locust bean gum on glucose tolerance, sugar digestion, and gastric motility in rats. J Nut. 1981;111:2152–6. [PubMed]
  83. Hoffman A. Hydrogels for biomedical applications. Adv Drug Deliv Rev. 2002;54:3–12. [PubMed]
  84. Malik K, Arora G, Singh I. Taste masked microspheres of ofloxacin: Formulation and evaluation of orodispersible tablets. Sci Pharm. 2011;79:653–72. [PMC free article] [PubMed]
  85. Tobyn MJ, Staniforth JN, Baichwal AR, McCall TW. Prediction of physical properties of a novel polysaccharide controlled release system. I. Int J Pharm. 1996;128:113–22.
  86. Staniforth JN, Baichwal AR. TIMERx®: Novel polysaccharide composites for controlled/programmed release of drugs in the gastrointestinal tract. Expert Opin Drug Deliv. 2005;2:587–95. [PubMed]
  87. Sunil SA, Srikanth MV, Rao NS, Uhumwangho MU, Latha K, Murthy KV. Chronotherapeutic drug delivery systems - An approach to circardian rhythms diseases. Curr Drug Deliv. 2011;8:622–33. [PubMed]
  88. Moin A, Shivakumar H. Formulation and in vitro evaluation of sustained-release tablet of diltiazem: Influence of hydrophilic gums blends. J Pharm Res. 2010;3:600–4.
  89. Colombo P, Conte U, Gazzaniga A, Maggi L, Sangalli ME, Peppas NA, et al. Drug release modulation by physical restrictions of matrix swelling. Int J Pharm. 1990;63:43–8.
  90. Conte U, Maggi L. Modulation of the dissolution profiles from Geomatrix® multi-layer matrix tablets containing drugs of different solubility. Biomaterials. 1996;17:889–96. [PubMed]
  91. Ahmed S, Mangamoori L, Rao Y. Formulation and characterization of matrix and triple-layer matrix tablets for oral controlled drug delivery. Int J Pharm Pharm Sci. 2010;2:137–43.
  92. Patel M, Tekade A, Gattani S, Surana S. Solubility enhancement of lovastatin by modified locust bean gum using solid dispersion techniques. AAPS PharmSciTech. 2008;9:1262–9. [PMC free article] [PubMed]
  93. Watanabe K, Yakou S, Takayama K, Machida Y, Nagai T. Factors affecting prednisolone release from hydrogels prepared with water-soluble dietary fibers, xanthan and locust bean gums. Chem Pharm Bull. 1992;40:459–62. [PubMed]
  94. Deshmukh V, Sakarkar D, Wakade R. Formulation and evaluation of controlled release alginate microspheres using locust bean gum. J Pharm Res. 2009;2:458–61.
  95. Deshmukh V, Jadhav J, Masirkar V, Sakarkar D. Formulation, optimization and evaluation of controlled release alginate microspheres using synergy gum blends. Res J Pharm Technol. 2009;2:324–7.
  96. Mujoriya R, Dhamande K, Wankhede U, Angure S. A review on study of buccal drug delivery system. Inn Syst Design Eng. 2011;2:1–13.
  97. Sudhakar Y, Kuotsu K, Bandyopadhyay AK. Buccal bioadhesive drug delivery — A promising option for orally less efficient drugs. J Control Release. 2006;114:15–40. [PubMed]
  98. Şenel S. Potential applications of chitosan in oral mucosal delivery. J Drug Deliv Sci Technol. 2010;20:23–32.
  99. Remuñán-López C, Portero A, Vila-Jato JL, Alonso MJ. Design and evaluation of chitosan/ethylcellulose mucoadhesive bilayered devices for buccal drug delivery. J Control Release. 1998;55:143–52. [PubMed]
  100. Yamagar M, Kadam V, Hirlekar R. Design and evaluation of buccoadhesive drug delivery system of metoprolol tartrate. Int J PharmTech Res. 2010;2:453–62.
  101. Vijayaraghavan C, Vasanthakumar S, Ramakrishnan A. In vitro and in vivo evaluation of locust bean gum and chitosan combination as a carrier for buccal drug delivery. Pharmazie. 2008;63:342–7. [PubMed]
  102. Raghavan CV, Muthulingam C, Leno Jenita JA, Ravi TK. An in vitro and in vivo investigation into the suitability of bacterially triggered delivery system for colon targeting. Chem Pharm Bull. 2002;50:892–5. [PubMed]
  103. Sinha V, Kumria R. Polysaccharides in colon-specific drug delivery. Int J Pharm. 2001;224:19–38. [PubMed]
  104. Chourasia M, Jain S. Polysaccharides for colon targeted drug delivery. Drug Deliv. 2004;11:129–48. [PubMed]
  105. Kumar R, Patil M, Patil S, Paschapur M. Polysaccharides based colon specific drug delivery: A review. Int J PharmTech Res. 2009;1:334–46.
  106. Hirsch S, Binder V, Schehlmann V, Kolter K, Bauer KH. Lauroyldextran and crosslinked galactomannan as coating materials for site-specific drug delivery to the colon. Eur J Pharm Biopharm. 1999;47:61–71. [PubMed]
  107. Marianecci C, Carafa M, Di Marzio L, Rinaldi F, Di Meo C, Alhaique F, et al. New vesicle-loaded hydrogel system suitable for topical applications: Preparation and characterization. J Pharm Pharm Sci. 2011;14:336–46. [PubMed]
  108. Sinico C, Fadda AM. Vesicular carriers for dermal drug delivery. Expert Opin Drug Deliv. 2009;6:813–25. [PubMed]
  109. Lilia Romero E, Morilla MJ. Topical and mucosal liposomes for vaccine delivery. Wiley Interdisc Rev Nanomed Nanobiotechnol. 2011;3:356–75. [PubMed]


Posted by 겨울소나기

(주)한송인더스트리는 (http://www.texchem.co.kr) 최근 셀룰로오스 섬유소재 날염에 사용되는 파우더 타입의 합성호료 'HANTE CV-300'을 소개했다. 

합성 호료로 알긴산소다와 동일한 탈호성이 있는 ‘한텍스 CV-300'은 알칼리에 안정하며 기존 합성 호료의 색호 준비시간이 4~8시간 걸리는 것에 비해 60분 이내로 날염에 적합한 색호 준비가 가능, 시간 효율이 뛰어나고 평판날염 및 로터리날염 모두 적합하다. 특히 중점도 및 고점도 알긴산소다에 비해 높은 컬러일드와 균염성이 우수한 장점을 가지고 있어 사용업체들로부터 호응을 얻고 있다고 회사측은 설명한다. 

 한편 파우더 타입의 합성염료 'HANTEX 270P'에 대한 문의도 증가하고 있다. 이 제품 역시 기존 8시간 정도 걸리던 날염호 준비 시간을 30분 정도로 단축시키며 파우더 타입으로 액상 호료 사용시 다른 약품들과 섞어 쓸 때 생기는 물성변화를 방지할 수 있다. 또 니트나 레이온 원단의 큰 모티브날염에서 우수한 균염효과를 발휘하는 장점이 있다.

HANTE CV-300이 대체 가능한 기존 제품들
- PRINTEX RE-3 
- PRINTEX RE-5
- Sodium alginate
- 면용 알긴산소다 복합호

장점

- 알긴산소다는 천연물(갈조류)을 원료로 매우 복잡한 공정을 거쳐 추출 한 후 화학적 반응을 통해 얻어지는 수용성 고분자 입니다. 그런이유로 최종 제품이 Sodium alginate의 가격 등락폭이 매우 심한것이 현실입니다. 우리나라에서 수입하는 섬유 가공용 알긴산소다의 대부분은 중국에서 생산됩니다. 최근에는 중국 내부의 수요 급증에 의한 수급 불균형 및 중국의 환경문제와 맞물려 가격이 폭등하기도 했습니다. 

이런 불안정한 공급 및 가격 안정화를 위한 (주)한송인더스트리에서는 수년간의 개발 기간을 거쳐 HANTEX CV Series를 개발하여 판매하고 있습니다. 알긴산소다와 비교하여 우수한 품질 및 경제성을 모두 잡을 수 있는 제품입니다.

 

Posted by 겨울소나기

Addition of Bisulfite to Aldehydes

  • Benzaldehyde 
  • Sodium bisulfite

Apparatus and glass wares:

  • 3 graduated cylinder with stopper 500 mL
  • beaker 200 mL
  • Erlenmeyer flask with stopper 250 mL
  • temperature probe
  • temperature measuring device

Experimental procedure:

Using an Erlenmeyer flask with stopper, 108 g of sodium bisulfite are dissolved in 200 mL of dist. water. Sodium bisulfite dissolves in water to form bisulfite ions. The solution of bisulfite is poured into a graduated cylinder containing 116 mL of benzaldehyde. The stoppered cylinder is shaken vigorously. After removing the stopper a temperature probe connected to a temperature measuring device is inserted into the reaction mixture.

Results:

With an exothermic reaction the content of the graduated cylinder solidifies.

Discussion:

The characteristic reaction of aldehydes and ketones is addition across the carbon-oxygen double bond. Because of polarization of the C=O bond, the carbon atom of the carbonyl group becomes electron-deficient, acquiring a partial positive charge. This makes it susceptible to nucleophilic attack by an electron-rich chemical species. In the present case, bisulfite ion is added to the electrophilic center. Since the sulfur atom of bisulfite has an unshared pair of electrons it can act as a nucleophile and form a bond to carbonyl carbon(1)

In general, aldehydes are more reactive than ketones. There is a combination of steric hindrance and inductive effects that makes ketones to react slower than aldehydes (2).

steric hindrance carbonyl carbonsteric hindrance carbonyl carbon


    • Bulky alkyl groups sterically hinder the approach of nucleophile.
    • The electronic effects of alkyl substituents are weakly electron donating. So they make the C atom in carbonyl less electrophilic

    The addition of bisulfite is usually employed to purify aldehydes. Aldehydes are isolated from reaction mixtures through its bisulfite derivatives. The addition compound can be split easily to regenerate the aldehyde by treating it with either dilute mineral acid or dilute alkali.

    Original doc


    Benzaldehyde

    Packaging & Delivery

    Packaging Detail: 200kg/drum or as required

    Specifications

    • CAS#: 100-52-7
    • EINECS# 202-860-4
    • MF: C7H6O
    • MW: 106.12
    • Purity: 99.0%
    • mp -26 °C
    • bp 179 °C
    • density 1.05
    • vapor density 3.7 (vs air)
    • vapor pressure 4 mm Hg ( 45 °C)
    • Appearance: Colourless liquid

    Application:

    Application: Benzene formaldehyde is medicine, dyestuff, spices and resin industry an important raw material, but also can be used as a solvent, plasticizer and low temperature lubricant, etc. In essence industry is mainly used to allocate flavouring essence, a few used for cosmetic essence and cigarette flavor.

    Posted by 겨울소나기

    알긴, 알긴산소다로 알려진 해조 추출물의 용도및 적용방법에 관한 기초적인 지식을 정리한다. 관련된 업무에 종사하거나 자료가 필요하신 분들에게 도움이 되기를 바라면서 정리한다.

    원료

    알긴산소다를 생산하는 원료들은 매우 다양하고, 나라마다 차이가 있다. 다음의 그림을 참조하면 알긴산소다를 생산하기위한 원료들을 지역별로 파악할 수 있다. 중국은 라미나리아가 주종이지만, 양 문제 등으로 칠레 혹은 페루에서 일부의 원료를 수입하여 자생하는 조체와 혼합하여 생산하고 있다. 섬유 가공용 알긴산소다의 경우 이들 원료 조체의 종류에 따라 분자량, M/G비, 유동성, 점도 등 품질이 달라진다. 

    특히 M/G비는 조체에 따라 다르고, 대부분의 제조업체에서는 이를 분석할 수 없고, 제조자들도 이를 품질 특성의 조절을 위한 평가 기준으로 수립하지 않고(명월, 쥬다양은 관리를 하고 있는 것으로 파악된다.) 있다. G Block이 많은 조체를 사용하면 칼슘이온의 제거가 쉽지 않고, 유동성도 매우 저하한다.  

    ---- 작성중

    중국산 알긴산소다의 품질 - 날염용 호료

    중국산의 경우 이와같은 물성을 이해하고 있는 생산자는 소수이다. 또한 중국산 알긴산소다의 경우, 이와 같은 기본적 노하우가 부재한 업체가 대부분이고, 생산 시 이런 기술적 요소를 관리, 적용하는 업체도 물론 소수이다. 뿐만 아니라 순수 알긴산소다를 생산한 다음 추가적으로 증량제를 넣어 표면 단가를 낮추어 전세계 시장에 뿌리고 있다. 매달 컨테이너 베이스의 상품을 구매하고 있지만 관리하기가 쉽지 않다.



    이들 원료별 생산 현황은 다음의 chart와 같다.

    Seaweeds can be classified into three broad groups based on pigmentation: brown, red and green. Botanists refer to these broad groups as Phaeophyceae, Rhodophyceae and Chlorophyceae, respectively. Brown seaweeds are usually large, and range from the giant kelp that is often 20 m long, to thick, leather-like seaweeds from 2-4 m long, to smaller species 30-60 cm long.

    Alginates are refined from brown seaweeds throughout the world. None of the usual seaweeds for alginate production are cultivated. They cannot be grown by vegetative means, but must go through a reproductive cycle involving an alternation of generations this makes cultivated brown seaweeds too expensive when compared to the costs of harvesting and transporting wild seaweeds. The only exception is for Laminaria japonica, which is cultivated in China for food but the surplus material is diverted to the alginate industry in China.

    Alginates from different species of brown seaweed often have variations in their chemical structure, resulting in different physical properties. For example, some may yield an alginate that gives a strong gel, another a weaker gel; one may readily give a cream/white alginate, another may give that only with difficulty and is best used for technical applications where color does not matter.

    제조공정

    갈조류에서 알긴산소다를 생산하는 공정은 칼슘법과 염산법의 2가지로 대별된다. 그리고 생산자의 노하우에 따라 제품의 품질은 매우 달라질 수 있다. 뿐만 아니라 규모나 기술에 따라 원가도 상이하게 나올정도로 복잡한 단위공정을 거쳐 (약 18~20 단위의 공정이 필요함) 생산되기 대문이다. 일반적인 제조방법은 다음 그림과 같다. 

       

    ALGINATES ?

    Alginates* were first isolated by Stanford by alkalineextraction of brown algae a process used for iodine extraction.

    The use of the brown seaweeds is well-known since ancient times: Chinese people and Romans used themin medicines and cosmetic preparations. Production on an industrial basis started in the United-States around 1930. At the beginning,Alginates were used for the production of canned foods intended for seamen.

    • Algin is also the genenc term for salts of alginic acid

    STRUCTURE

    Alginic acid is a polyuronide made up of a sequence of two hexuronic acid residues: 3-D-mannuronic acid unit and α-L-guluronic acid.

    When examining the Haworth formula, it can be observed that the two acid residues involve epimerization at C-5. The only difference is the occurence of the linkage C-5 - C-6, above or below the medium plane of the ring. The bulkiness and the interactions, due to the acid function at C-6, dictate the conformation of the ring and involve the equatorial position of the acid function. The 3-D-mannuronic acid unit adopts always the C conformation and α-L-guluronic acid residue the C conformation.

    The investigations by partial hydrolysis carried out by Haug and Larsen and more recently the studies by C NMR Spectra (Nuclear Magnetic Resonance Spectroscopy) show that these two monumer residues do not display a random distribution but occur in blocks containing about 20 units.

    homogeneous blocks of mannuronic acid residues M.M.M.M 

    homogeneous blocks of guluronic residues G.G.G.G 

    alternating blocks of these two acid residues M.G.M.G

    Macromolecules are associations of these blocks at various degrees depending on the species used and to a lesser degree the maturity of the seaweed and the area of harvesting. Infrared spectroscopy provides a rough but rapid information regarding the percentage of mannuronic acid residues and guluronic acid units.

    The distribution of the monomer residues controls the alginate capacity to form gel. The guluronic blocks have the conformation best suited to the calcium-induced gelation.

    Brown seaweeds are found along rocky coasts. They grow along the North atlantic coastline; mainly in the United-States, Great-Britain, France (Brittany) and Norway.

    In France, brown seaweeds are harvested along the Brittany coasts. Alginates are essentially extracted from:

    Laminaria digitata hyperborea 

    Ascophyllum nodosum

     Fucus serratus

    These seaweeds display large variations in mannuronic/guluronic proportions.

    BOTANICAL SOURCE

    ALGINATES EXTRACTION PROCEDURE

    All processing stages are based upon the two following properties: alkaline metal alginates are soluble in water, alginic acid and its calcium derivative have very limited solubility in water.

    DEMINERALIZATION

    The process consists of macerating seaweeds with diluted mineral acid, which allows ion exchange between the calcium of alginate and the hydrogen of the acid used. Thus the alginate contained in the algae is converted to alginic acid by systematic lixiviation, while non-desirable constituants (fucoidine mannitol, mineral salts…) are removed.

    ALGINATE EXTRACTION

    The demineralized seaweeds are then ground in the presence of an alkali or an alkaline salt which neutralizes alginic acid and converts it to the soluble alginate corresponding to the salt used. The insoluble matters (cellulosic and proteinic components) are removed by filtration, floatation and settling.

    COLLOIDS COAGULATION

    This is carried out by a mineral acid to the alginate solution. The alginic acid precipitate is then washed and dried.

    NEUTRALIZATION e.g. PREPARATION OF THE DIFFERENT ALGINATES

    Alginic acid is neutralized with different alkaline bases or basic components according to the type of alginates required. It occurs:

    by mixing the components or. by exchange in alcohol. The final product is then dried, milled and sieved to the desired particle size.

    Production of sodium alginate

    INSOLUBLE CALCIUM AND MAGNESIUM SALTS OF ALGINIC ACID IN SEAWEED ↓Na2CO3 (alkaline extraction)

    SOLUBLE SODIUM ALGINATE PLUS INSOLUBLE SEAWEED RESIDUE ↓Filtration

    SODIUM ALGINATE SOLUTION + CaCl2↓

    INSOLUBLE CALCIUM ALGINATE ↓

    HCl↓

    INSOLUBLE ALGINIC ACID

    Na2CO3 or NaOH↓

    SODIUM ALGINATE

    CALCIUM ALGINATE PROCESS ALGINIC ACID PROCESS

    Uses of Alginate

    Thickener

    • ices and ice creams
    • products for pastries
    • toothpastes
    • cosmetics
    • textile printing
    • paper printing
    • water flocculation
    • Gelling agent

    In the presence of calcium and acid

    reformed or structured products entrapment and immobilization of enzymes and microorganisms absorbent products

    날염용 호료로서의 Sodium alginate

    알긴산소다를 날염용 호료로 사용함에 가장 문제가 되는 것은 유동성이다. 다른 호료에 비해 유동성이 기본적으로 양호하다. 그러나 저가 제품의 경우, 분자량이 가장 큰 고점도 알긴산소다를 생산한 후 중국에서 이미 증량제 들(SHMP, STPP, 망초, 기타)을 혼합하여 표면 단가를 조정한 후 전 세계에 공급을 하고 있는 상황이라 구매자가 이를 컨트롤 할 수 없는 상황이다.

    대부분의 수입업자들은 퓨어(순수) 알긴산소다라는 말을 엄청 남용한다. 물론 판매를 위해서 그런 용어를 사용하는데, 최종 사용자들도 이를 그대로 답습하여 순수 알긴을 좋아한다. 그러나 현재 한국에서 수입한여 판매되는 날염용 알긴산소다의 경우, 순수 알긴산소다는 거의 없어 보인다.




     

    'Textile_auxiliary' 카테고리의 다른 글

    날염용 합성 호료  (0) 2015.04.30
    Nucleophilic Addition to the Carbonyl Function  (0) 2015.04.16
    Water-Based Ink  (0) 2015.03.23
    유연제(Fabric softener)  (0) 2015.03.19
    Amino-modified Silicone Fluid for Textile Treatment  (0) 2015.03.19
    Posted by 겨울소나기

    Water-Based Ink

    Posted by 겨울소나기

    섬유 가공용 유연제

    실 또는 직물에 적당한 유연성을 주거나 유연 평활성을 주어 최종제품의 태를 개량하여 상품가치를 높이기 위해서 처리하는 가공을 유연가공(soft finishing)이라고 한다. 가공에 쓰이는 약제는 유연제 또는 유연평활제로 불리고 있다. 그러나 실제적으로는 직물에 유연성을 주거나 태를 개량하는 목적 외에 섬유의 종류 및 최종제품의 용도에 따라 편성, 봉제, 대전방지, 흡수, 재오염방지, 수지가공 등에 있어서 직물의 물성저하 방지, 발수·발유 등의 제 성능과의 조합이 배려된다. 그런데 최근 섬유제품의 가공은 기능성보다도 감성(感性)을 중요시하는 경향이 있어 개성화·고급화와 아울러 태의 초소프트화가 요망되고 있다. 이와 같은 태를 얻는데는 유연제만으로는 만족한 결과를 얻기는 힘들고 소재나 기계적 처리를 포함하여 종합적으로 고려해 볼 필요가 있다. 소재적으로 볼 때 합성섬유는 초극세사 등에 의한 차별화 및 유연화 등이 고려되고 천연섬유나 그 혼방품은 효소감량 등에 의한 유연화 등이 고려된다. 그리고 기계적으로는 캘린더, 기모, 버핑기 등에 의한 처리가 있다. 실제적으로는 이와 같은 처리와 선정되어진 소재의 조합에 의하여 유연 온화감, 냉감, 피치스킨 촉감, 실크, 울 촉감, 드레이프성 등을 주고 있는 실정이다. 여기에서는 유연제에 의한 섬유제품의 여러 가지 태를 개량하는 가공에 대하여 설명하고자 한다.

    섬유 가공용 유연제의 종류

    1. 계면활성제계 유연제

    계면활성제계의 유연제는 각종 유연제 중에서 가장 많이 사용되어 섬유제품의 최종 가공공정에 간단히 응용되어 왔으나, 최근에는 여러 가지 기능적인 성능 및 특징이 요구되어 조성 및 구조에 대해서 많은 검토가 이루어지고 있다. 일반적으로 양이온계 유연제는 매끈한 감과 유연성이 크고 약발수성(弱撥水性)으로 백도저하가 크다. 음이온계는 매끈한 감이 작고 부품감이 있는 드라이 터치를 주고, 비이온계는 양이온계와 음이온계의 중간 정도로서 매끈한 감은 양이온계 다음으로 크고 부품감은 음이온계 다음으로 큰 것으로 알려져 있다. 그러나 실제로 필요한 태를 얻기 위해서는 여러 가지 계면활성제를 조합하여 유연제를 개발하고 있기 때문에, 이온성에 따른 태의 차이점은 명확한 것이 아니고 조합에 의하여 부품감과 매끈한 감을 줄 수 있도록 하거나, 양이온계의 태를 주면서 발수성이 없고 백도저하가 극히 적은 것, 음이온성으로 매끈한 감이 큰 것 등 계면활성제를 적당히 조합하므로서 여러 가지의 태를 얻을 수 있다. 다음은 일반적으로 사용되고 있는 계면활성제계 유연제와 최근에 기능성 유연제(예: 흡수성 유연제)를 분류·소개한다.

    (1) 양이온계 유연제

    • 긴 사슬 모노 또는 디알킬 4급 암모늄염
    • 지방산 폴리아민 폴리아마이드형 (폴리에틸렌폴리아민과 지방산의 반응물)
    • 알킬이미다졸린형

    (2) 음이온계 유연제

    • 황산화유염(주로 牛脂, 長須鯨油 등)
    • 말향경유의 부분황산화물의 염
    • 고급알코올(C16 ∼ C18) 황산 에스터염 또는 인산 에스터염
    • 디알킬술포호박산 에스터(dialkylsulfosuccinate)

    (3) 양성이온계 유연제

    • 긴 사슬 알킬베타인
    • 긴 사슬 알킬 이미다졸리늄베타인
    • N, N-디알킬 아미노 프로피온산염

    (4) 비이온계 유연제

    • 다가 알코올 지방산 에스터
    • 폴리에틸렌글리콜 지방산 에스터

    (5) 기능성 유연제

    1. 흡수성 음이온계 유연제 흡수성의 음이온기로서 -COONa, -SO3Na를 함유하는 형으로 -CONH, -N< 등 유연기의 결합을 보유하고 있는 유연제이다. PEG·PEG 유도체/친수성 알킬아마이드 화합물의 조합이나 에폭시 알칸/디에탄올 아민/무수말레산의 반응물로 제조할 수 있다. 흡수성 양이온계 유연제 일반

    2. 적으로 널리 사용되고 있는 양이온계 유연제는 어떻게 해서든지 유연성을 잃지 않고 흡수성을 줄 것인가 하는 것이 중요한 점인데, 실제적으로 완전하게 그 기능을 나타나게 하는 것은 어렵다. 다만 흡수성의 구조를 갖도록 연구하여 조금이라도 습윤력이 있는 유연제를 고안해내도록 하는 것이 바람직하다.

    에폭시 알칸/디메틸아민/디클로로프로판올의 반응물과 기재로 디스테아릴디메틸암모늄염을 사용하여 흡수성을 향상시키는 방법 등이 있다.

    (6) 내구성(내세탁성) 유연제

    일반적으로 사용되고 있는 계면활성제계 유연제는 이온성과 관계없이 셀룰로오스 섬유에 흡착·부착하는 형으로, 특별히 가교결합하는 구조로 되어 있지는 않다. 따라서 세탁에 견디고, 반복세정에도 그 유연성을 잃지 않는 내구성 유연제의 개발이 요구되고 있다. 일반적으로 긴 사슬 알킬기를 섬유에 결합시켜 내구성을 향상시키는 방법의 한 예를 들어본다.

    첫째. methyl distearylamide propylamine을 용매하에 epichloro-hydrine과 반응시킨 화합물을 처리하여 셀룰로오스와 반응시킨다. 이 화합물과 셀룰로오스와의 반응은 구조 중 에폭시기와의 사이에서 일어나며, 이때 아민 화합물의 흡착과정에서 흔히 발생되는 황변현상에 대해서도 주의가 필요하다.

    둘째. 위와 유사한 방법이지만 N-methyl distearylamine에 epichlorohydrine을 반응시켜 얻은 다음과 같은 형의 것을 사용해도 좋다. 또 이것을 흡수성 형태로 만들기 위해서 1몰의 distearylamine에 5∼10몰의 EO를 첨가한 후 epichloro -hydrine을 반응시키는 방법도 제안되고 있다.

    가교기를 검토하는 것은 최근의 가공제에 있어서 중요하기 때문에 수많은 가교기를 생각할 수 있다. 그러나 유연성을 저해하지 않고 제품의 유화·분산이 우수한 유연제의 개발이 앞으로 기대된다.

    2. 실리콘계 유연제

    유기 실리콘화합물은 섬유제품의 제조공정 중이나 가공공정 중에 고부가가치의 차별화 고급제품을 생산하기 위하여 최근에 이용이 급증하고 있다. 이들 섬유처리 공정에는 실리콘오일(silicone oil), 실리콘고무(silicone gum), 실리콘수지(silicone resin)나 실란(silane)화합물(SinH2n+2)이 직접적으로 또는 유화액이나 분산액의 형태로 쓰이고 있다. 일반적으로 섬유제품의 평활성이나 발수성을 주는 것에는 dimethyl polysiloxane oil(DMPS)과 methyl hydogen poly -siloxane oil(MHPS)이 주로 사용되어 왔다. 그러나 태의 다양화와 고부가가치, 차별화 상품의 개발을 위하여 1980년대에 들어와서 많은 유기변성실리콘(organo reactive silicone oil, modified silicone oil)이 태 개량제로서 사용되었다.

    유기변성실리콘은 DMPS의 일부의 메틸기를 아미노기, 에폭시기 또는 카르복실기 등으로 치환된 것이나, 그 변성률은 1∼5%로 나머지 대부분의 95∼99몰%는 dimethyl siloxane 단위(CH3)2SiO로 구성되어 있는 물리화학적 기본 특성은 DMPS 그 자체인 것이다. 또한 가열경화형이나 실온경화형의 실리콘 고무도 주 단위는 dimethyl siloxane 단위로 되어 있다.

    (1) 섬유가공용 유기실리콘화합물

    섬유가공에 이용되는 유기실리콘화합물의 구조와 그 제법의 개요를 살펴보면 다음과 같다.

    silicone oil (monofunctional) silicone gum (bi-functional) silicone resin (tri-functional)

    (2) DMPS의 특성

    표 3-17에 DMPS㈛(CH3)2SiO2n의 주사슬의 Si-O-Si 결합과 유기계 고분자의 대표적인 C-C 결합, C-O 결합의 다른 점을 비교하여 나타내었다. DMPS의 골격인 Si-O-Si 결합은 유기계의 골격을 형성하는 C-C 또는 C-O 결합과 비교하여 결합 에너지는 약 1.3배이고 결합각, 결합의 원자간의 거리도 크다. 표 3-17. SiO 결합과 CO, CC 결합의 비교 항목 단위 Si-O-Si C-O-C C-C-C 결합각 결합에너지 결합거리 이온결합성 degree kcal/mol Å % 130―160 108 1.64 50 110 85.5 1.43 22 110 84.9 1.54 0

    전기음성도

    Si: 1.90 C: 2.55

    이 사실은 유기계 고분자에 비하여 DMPS는 열적으로 안정하고 유연성이 풍부하다는 것을 시사하고 있다. 그리고 Si는 C 에 비해서 금속적 성질이 보다 크고 전기음성도가 적다. 더욱이 Si-O-Si는 약 50%가 이온결합인 것이 특이하다. 특히 섬유평활제 등으로 쓰이는 유동파라핀, 왁스류, 폴리에틸렌글리콜 등에 비하여 DMPS는 내열성이 극히 우수하다. 이러한 점은 원사·원면용 유제, 탄소섬유용 유제, 여러 가지 가공사용 유제, 예를 들면 가연가공 등의 유제 또는 고온에서 열연신 고정시키는 산업용 타이어코드용 유제 등에 있어서는 매우 유리하다. 또한 Si-O-Si의 결합각도 크고, 원자간 결합거리도 커서 운동의 자유도가 크게 된다. 더욱이 Si-C의 결합거리도 1.93Å으로 크고 후술하는 DMPS의 분자간력도 약하기 때문에 결정화하지 않는다. 따라서 산소, 질소 또는 수증기 등의 분자를 투과하기 쉽게 하여 투과성·통기성이 풍부한 섬유가공을 할 수 있다.

    그림 3-28. DMPS의 구조와 특성

    그림 3-28은 DMPS의 구조와 물리적 특성을 나타낸 것이다. DMPS는 Si 원자수 6∼7개 단위로 나선 구조를 취하고 메틸기가 외측에 Si-O-Si가 심(芯)측에 배열된 분자구조를 갖고 있다. 즉 곁사슬로 된 메틸기는 저표면 에너지의 기로서 이것이 주사슬의 Si-O-Si의 극성기를 초(sheath)와 같이 덮고 있기 때문에 분자간의 인력이 약하게 된다. 이 때문에 DMPS의 분자간력은 작고, 또한 표면장력이 극히 약한 것도 이와 같은 분자구조를 취하고 있기 때문인 것으로 고려되고 있다. 이 성질은 섬유의 처리에 있어서 매우 중요하다. 이와 같은 구조와 특성 때문에 복잡한 섬유, 섬유 집합체·조직 뿐만 아니라 1본, 1본의 복잡한 표면형상에서도 DMPS는 고르게 부착하여 섬유와 섬유간 또는 조직간의 굴림대(回轉子) 역할을 하여 유연처리나 신장·회복 효과를 증대시킨다. 다음에 DMPS의 섬유가공에의 응용을 쉽게 이해할 수 있게 하기 위하여 그 특징을 열거해 본다.

    • 무색 투명하다.
    • 열에 대하여 안정하고 온도에 따른 점도변화가 작다.
    • 저온특성이 우수하다.
    • 표면장력이 낮다.
    • 평활성이 양호하다.
    • 무미, 무취로 독성도 매우 작다.
    • 피부에 자극성이 없다.
    • 내산화성이 우수하고 장기 보존시에도 변질하지 않는다(화학적 안정성).
    • 증기압이 낮고 인화점이 높다.

    그림 3-29. 섬유가공 공정과 실리콘의 용도의 예

    • 수증기나 공기의 투과성이 양호하다.
    • 발수성이 풍부하고 광택이 좋다.
    • 소포성이 우수하고 팽창계수가 크다.

    (3) 섬유가공 공정에의 응용

    섬유제조 및 가공공정 중에 응용되는 실리콘을 용도별로 분류하면 그림 3-29와 같다.

    (4) 유기변성 실리콘의 종류와 특징

    DMPS의 메틸기의 일부가 다른 작용기로 치환된 유기변성 실리콘이 태의 다양화와 내세탁성 향상을 목적으로 최근에는 모든 섬유에 처리되고 있다. 섬유소재의 상이, 실의 형태, 꼬임수, 섬도, 조직, 밀도, 용도, 목적, 태의 선호 등 많은 요인에 의하여 여러 가지 유기변성 실리콘이 개발되어 왔다. 그림 3-30에 유기변성 실리콘의 분류와 용도의 예를 들고, 주요 유기변성 실리콘의 화학구조와 그 특징을 표 3-18에 나타낸다.

    에폭시 : 흰색·엷은색 염색포의 태 개량, PET 부품감부여 에폭시 폴리에테르:셔츠 및 내의의 흡수·유연·SR성부여 아미노 : 면 및 혼방품의 유연, 아크릴의 평활성 아미노 폴리에테르:내의류의 흡수·흡한·SR성 부여 카르복시 : 의마가공,PET 태 개량, 피혁의 처리 카르복시 · 폴리에테르:내의류 흡수·흡한, 안감류 대전방지 티올 : 양모의 평활 · 펠트화 방지 알코올 : 우레탄 코팅포의 개질 알킬 : 원사 · 원면용 유제의 평활성 폴리에테르 : 흡수 · 대전방지 · SR성부여 고급알코올 에테르 : 왁스와의 병용에 의한 봉사의 윤활성 인산에테르 : 원사 · 원면용 유제 플루오르 : 농염화, 소포제

    그림 3-30. 유기변성 실리콘의 분류와 용도의 예

    이들 유기변성 실리콘은 단독으로 사용하는 것 외에 다른 변성 실리콘이나 실란(silane)류를 조합시켜 사용하는 경우도 있다. 예를 들면, 에폭시 변성 실리콘과 아미노 변성 실리콘, 아미노 변성 실리콘과 카르복시 변성 실리콘 또는 아미노 변성 실리콘과 실란 등의 조합으로, 이들의 조합은 또 새로운 태를 창출하고 내세탁성도 향상시키게 된다.

    표 3-18. 유기변성 실리콘의 화학구조와 특징 . 실 리 콘 구 조 식 특 징 DMPS

    평활성이 크고 백도저하 없음 에폭시 변성 실리콘

    평활성이 크고 백도저하 없음 유연성 양호 아미노 변성 실리콘

    매끈한 감이 좋고 심(芯)이 없는 태가 얻어짐 백도저하 있음 카르복시 변성 실리콘

    평활성, 매끈한 감 열등 Silk-like handle 폴리에테르 변성 실리콘

    흡수성은 좋으나 유연성 열등

    표 3-19는 실리콘을 유화(폴리에테르 변성 수용액)하여 직물에 1% 부착시킨 2종의 시료를 전기 세탁기로 50분간씩 세탁을 3회 반복한 후 형광 X선 분석장치로서 시료에 잔존하고 있는 Si(%)를 측정한 것이다. 아미노 변성 실리콘/카르복시 변성 실리콘 수지를 처리한 100% 면 브로드직물 (broad cloth)의 경우 내세탁성이 매우 양호함을 알 수 있다. 현재 주로 많이 사용되고 있는 유기 변성 실리콘은 아미노 변성 실리콘과 에폭시 변성 실리콘으로서 실리콘 오일의 중합도와 변성률을 변화시키는 것에 의하여 부품감이나 심이 없는 태, 반발탄성 등의 태를 얻을 수가 있다. 표 3-19. 각종 실리콘의 내세탁성 시 료 실 리 콘 세탁후의 Si 잔존율(%) PET/면(65/35) broad 면 broad A B C D E F G 중점도 DMPS(350cSt) 고점도 DMPS(100,000cSt) 에폭시 변성(18,000cSt) 아미노 변성(1,200cSt) 카르복시 변성(2,200cSt) D/E 블랜드(1/1) 폴리에테르 변성(450cSt) 13.5 33.0 52.3 82.4 70.8 75.5 4.3 15.5 27.5 48.4 72.5 60.8 98.7 5.6

    1) 아미노 변성 실리콘(amino-functional silicone)

    아미노 변성 실리콘은 면, 레이온, PET/면 등에 처리하므로서 심이 없는 유연한 태가 얻어진다. 아미노 변성 실리콘의 유연효과는 아미노기의 극성에 의하여 실리콘 중합체가 효과적으로 섬유표면에 흡착·배열하고, 또한 공기중의 수분과 탄산가스의 존재 때문에 2가의 산으로 되어, 이것이 아미노기 2분자간의 가교를 형성하여 고중합체화 함으로써 내세탁성이 있게 된다. 이 증점(增粘) 경향은 아미노 변성 실리콘을 공지 중에 얇게 펼쳐 놓음으로써 쉽게 관찰할 수 있다. 아미노 변성 실리콘은 유화가 쉬워서 유화액은 희석안정성이 풍부한 특징이 있으나, 열이나 자외선에 의하여 아미노기가 산화하여 시간이 경과함에 따라 황변하는 결점도 가지고 있다. 아미노기의 함량을 많게 하면 태가 유연하여 매끈한 감이 좋아지고, 아미노기의 함량을 작게 하면 매끈한 감이 감소하여 유연성도 나빠진다. 이 때문에 종래에는 아미노기의 함량을 작게 하여 황변을 작게 하고, 아미노 실리콘의 분자량 등을 변화시키므로서 태의 저하를 예방할 수 있다. 최근에는 여러 가지 방법으로 아미노기를 봉쇄하는 것에 의하여 백도와 태의 밸런스를 이룰 수 있도록 하고 있으나, 그래도 백도와 태는 일정한 관계가 있는 것으로 생각된다. B, C, D 3종의 아미노 변성 실리콘은 반발 탄성적(elastomeric) 가공도 가능하여 편성포의 신장회복성, 피트(fit)성 부여, 방추가공 또는 부품감 있는 가공도 가능하게 된다. 이들 유화액에 흡착촉매를 병용하면 약 90% 이상의 실리콘을 흡착하는 처리가 가능하여 유화제가 부착하지 않아 보통의 침지처리와 다른 태를 창출함과 아울러 내세탁성도 좋고, 실리콘이 처리액 중에 거의 남지 않기 때문에 배수처리도 쉬운 장점이 있다. 표 3-20은 아미노 변성 실리콘 유화액으로 PET/면(65/35) 혼방편성포에 처리한 효과를 나타낸 것이다. 압축탄성률, 방추도, 강연도, 신장회복률 모두 처리 효과가 크며 mohair-like handle로 내의류의 처리제로 매우 적합하다. 아미노 변성 실리콘의 부착량은 포에 대하여 0.2∼0.5% o.w.f.가 적합하며 과량을 사용하면 흡수성을 상실한다. 표 3-20. 아미노 변성 실리콘* 유화액의 PET/면 편성포의 처리 효과. 항 목 실리콘부착(%) 압축탄성률(%) 방추도(%) 강연도(mm) 신장회복률(%) W F 77

    2) 에폭시 변성 실리콘(epoxy-functional silicone)

    에폭시 변성 실리콘은 아미노 변성 실리콘과 같이 황변하는 일이 없고 매끈한 감도 적기 때문에 외의나 연한색 염색포 또는 셔츠지와 같은 백색물의 가공에 적합하다. 양말단 에폭시 변성 실리콘도 시판되고 있으나, 섬유용으로는 다음 2종의 에폭시 변성 실리콘이 주체이고, 그 밖에도 에폭시기와 폴리에테르기를 분자 내에 가지고 수용성으로 SR성, 대전방지성, 태의 개량에 적합한 에폭시·폴리에테르 변성 실리콘도 시판되고 있다.

    Posted by 겨울소나기

    Amino-modified Silicone Fluid for Textile Treatment

    아미노 실리콘 오일은 섬유의 마무리 가공용(후가공) 유연제로 매우 광범위하게 적용되는 물질이다. 아미노 오일의 기본적인 성질을 이해하기 위해서 황변을 조사했다.

    황변성의 평가 방법

    • 아미노 오일을 각각 제조자가 권장하는 방법에 의해 유효성분 40% 농도의 제품으로 제조(유화)하고,
    • 제조한 실리콘 유연제 10% 수용액을 시험용액으로 적용한다.
    • pad->Dry -> Cure 의 방법에 의해 polyester 원단에 처리하고
    • 분광형 측색기 ColorEye 3100 으로 측색하여 평가(L, a, b value)

    황변성의 비교 결과




    'Textile_auxiliary' 카테고리의 다른 글

    Water-Based Ink  (0) 2015.03.23
    유연제(Fabric softener)  (0) 2015.03.19
    Decolorization of Coloring Wastewater by Magnetic Separation  (0) 2014.12.13
    Resist Printing  (0) 2014.12.10
    투습방수가공  (0) 2014.07.30
    Posted by 겨울소나기

    Decolorization of Coloring Wastewater by Magnetic Separation

    1. Formation of Magnetic Flocks of Dispersed Dyes by Magnetic Particles

    Decolorization of a dye solution is carried out by forming magnetic flocks of dye aggregates. Photograph 1 shows that after the magnetic feeding of dispersed dye assisted by magnetic particles and coagulant, the suspension is isolated by a magnet.


    Magnetic Separation of Dispersed Dyes, (a): suspension of dispersed dyes, (b): magnetic separation after the magnetic feeding.



    Photograph 1. Magnetic Separation of Dispersed Dyes, (a): suspension of dispersed dyes, (b): magnetic separation after the magnetic feeding by a magnet. 

    Similarly, it is also possible to remove the color of acidic dyes by the magnetic separation procedure using cationic coagulants. 

    Photograph 2 shows that a mixture of phthalocyanine dye and paper fiber is magnetically separated . Magnetic Feeding and Magnetic Separation for a Mixture of Phthalocyanine Dye and Paper. 


    Photograph 2. Magnetic Feeding and Magnetic Separation for a Mixture of Phthalocyanine Dye and Paper.


    Photograph 2. Magnetic Feeding and Magnetic Separation for a Mixture of Phthalocyanine Dye and Paper.

    2. Adsorption of Water-Soluble Dyes by Magnetic Activated Carbons (MACs)

    MACs have high specific surface areas due to their microporous structure and a high adsorption ability for a variety of water-soluble substances. MACs modified with the dispersion of the magnetic particles can be easily pulled up by a magnet. It is effective to use MACs to remove the contaminants in solution by the magnetic force. 

    Photograph 3 shows that MACs can easily adsorb the ionic dyes (Methylene Blue and Orange II) and can be collected by a magnet. 


    Photograph 3. Adsorption of Dyes (MB and Orange II) on MAC and Magnetic Separation.

    The system for wastewater treatment is constructed according to the flow chart as shown in Fig. 1. The colored wastewater from a dyeing factory are treated in an adsorption tank by MAC and followed by the magnetic separation. 


    Fig.1. Flow Chart for the Wastewater Treatment by MAC.


    Contaminated MAC is refined in a recovering tank by an oxidizing agent such as hydrogen peroxide. Water from a magnetic separation tank is reused as recicling water.

    'Textile_auxiliary' 카테고리의 다른 글

    유연제(Fabric softener)  (0) 2015.03.19
    Amino-modified Silicone Fluid for Textile Treatment  (0) 2015.03.19
    Resist Printing  (0) 2014.12.10
    투습방수가공  (0) 2014.07.30
    Replace Rosin Esters  (0) 2014.07.25
    Posted by 겨울소나기

    Resist Printing

    HANTEX OP-7

    By keeping track of current market development, we are offering an excellent range of Resist Printing Agent that is renowned in the market. We process the offered range utilizing utmost grade chemical compounds and high-end technology. With this agent these is no need to use any extra chemicals. Owing to their countless benefits, offered array find broad applications in diverse industries.

    Features:

    • Very effective
    • Easily soluble in water
    • Easy to use

    Product Details:

    - Innovative Thickeners For Wet On Wet Resist Printing For Disperse, Reactive & Pigment Dyestuffs - Easy to use. Print paste ready within 2 hours - No need to use any extra chemicals. Only single component thickener - No need to change printing recipe, fixation process and after wash process - Very effective white resist possible with any class of disperse dyestuffs, reactive dyestuffs and pigments - Single stage process without necessity of Pre-Dyeing or pad
    resist-printing_op-7-1_pe Offers Gum Thickeners from Guar, Tamarind, Tapioca Starch for Printing Textile Dyes, Cotton Fibres Sizing, Construction, Paints, Paper Manufacture by Adgums Private Limited in India.

    'Textile_auxiliary' 카테고리의 다른 글

    Amino-modified Silicone Fluid for Textile Treatment  (0) 2015.03.19
    Decolorization of Coloring Wastewater by Magnetic Separation  (0) 2014.12.13
    투습방수가공  (0) 2014.07.30
    Replace Rosin Esters  (0) 2014.07.25
    HANTEX A-160  (0) 2014.06.18
    Posted by 겨울소나기

    透濕防水 섬유

    가. 개요

    섬유는 원료 고분자물질의 개질에서부터 원단의 후가공에 이르기까지 다양한 방법으로 기능성을 부여하는 기술이 사용된다. 부여되는 기능은 물, 열, 빛, 전기, 냄새, 균, 약품 등 일상생활에서 흔히 접할 수 있는 여러 가지 요소에 따라 달라지는데 물(수분)에 대해서는 방수성(내수성, 발수성, 누수성), 투습성, 흡수성, 보수(保水)성, 흡습성, 보온성, 속건성 등의 기능이 있다. 이러한 기능은 단독으로 혹은 복합적으로 섬유에 부여되며, 그중에는 방수성-투습성 같은 서로 상반되는 성질의 기능도 있다. 복합적인 기능을 동시에 섬유소재에 부여하는 것은 상당히 어려운 기술이다. 그래서 PTFE의 다공질 필름을 원단에 라미네이팅(고아텍스, 1977, 미국)한 것은 앞서 말한 기능의 복합화를 실현시킨 혁신적인 소재였고, 그러한 구조는 투습방수 소재의 기본원리가 되었다. 빗방울의 직경은 안개비(霧雨)의 경우 100㎛, 소낙비(雷雨)가 3,000㎛인 반면에, 수증기의 분자 직경은 0.0004㎛에 지나지 않으므로, 원단에 0.1~10.0㎛ 정도의 미세공(微細孔)을 갖는 피막층을 형성시키면 투습성과 방수성을 동시에 얻을 수 있다. 다공질층은 고아텍스(Gore-Tex)와 같은 다공질 필름이나 코팅 피막으로 형성 가능하지만, 섬유간의 공극을 10㎛ 이하로 치밀하게 만든 고밀도 직물도 유사한 효과를 얻을 수 있다. 그리고 무공질(無孔質)피막층도 친수성 수지를 적용하면 다공질막과 동일한 투습방수성을 얻을 수 있다. 1) 투습방수 소재의 분류 투습방수 소재에는 다양한 종류가 있다. 제조법으로 분류하면 먼저 후가공 기술과 고밀도 직물로 대별되고, 후가공 기술은 코팅과 라미네이팅으로 나누어 진다(그림. 1). 고밀도 직물은 사용된 섬유에 따라 합섬 섬유와 천연 섬유로 나뉘고, 합섬은 극세 섬유(0.9De 이하)와 후가공사로 분류된다. 또한 후가공 기술을 적용한 투습방수소재는 내수압과 투습도의 정도로 분류될 수 있다(표 1). 이 외에도 부가기능을 도입한 보온성 타입(알루미늄, 세라믹, 카본 등의 코팅)과 신축성 타입 등이 있으며, 천연 고분자 원료를 응용함으로써 흡방수성 및 저결로성을 부여한 타입도 있다.

    그림.1 후가공의 제조법에 의한 분류

    나. 세부기술별 기술동향 및 특허동향

    이하의 세부기술별 동향은 습식코팅법, 건식코팅법, 라미네이팅법 등 후가공에 의한 투습방수 소재를 제조하는 방법에 대한 기술동향을 먼저 서술하기로 한다.

    1) 기술 동향

    1-1) 습식 코팅

    1-1-1) 개요 습식코팅방법은 폴리우레탄 수지를 착색제와 조합, 용제로 적절히 희석하여 조제한 코팅용 수지를 기포지에 코팅한 다음 물에 침적하여 수중으로 용제성분(DMF)을 추출시켜 미세 다공성 피막을 형성하는 것이다. 습식법에 의해 제조된 투습방수 원단은 통기성, Volume감, 부드러운 촉감 등이 부여된다. 습식 가공에 있어서 중요한 것은 목적하는 용도에 따라 다공의 형상(Cell구조)을 조절하는 것이다. 일반적으로 Cell의 형상은 여러 가지 인자, 조건 등에 의해 민감하게 변화되는데 특히 배합액 중의 수지의 농도, 응고조의 온도, 첨가제(계면활성제)의 종류 등의 복합 작용에 의해 크게 좌우된다.

    1-1-2) 국내외 동향

    1979년 도레이(일본)사가 개발한 이래 20여년간 투습방수원단의 주요한 제조수단이 되어왔으며, 국내에서는 80년대 초반 (주)코오롱에서 개발한 하이포라가 시초이다. 그동안 투습방수소재는 라미네이팅 방식에 의한 고어텍스(미국, W.L. GORE사)가 고가, 고기능 시장을 형성하고, 중저가 시장은 일본 및 한국의 습식공법에 의한 미세다공형 투습방수원단이 주류를 이루었다고 해도 과언이 아니다. 실제 생산량으로 보면 습식공법이 대부분을 차지해왔다. 습식공법은 초기 생산설비의 투자비용이 높고, 안정된 생산을 위해서는 고도의 기술축적이 필요하기 때문에 중국, 대만 등 후발 국가에서는 현재까지도 거의 전무한 상태이다. 표 2. 습식코팅에 의한 투습방수 원단

    습식공법에 의한 투습방수원단은 내수압 2,000 - 5,000 mmH2O, 투습도 3,000 - 5,000 g/㎡․24hrs 수준의 중기능성 제품이 주류를 이루고 있으나, 일본에서는 피막의 다층화, 특수 원료의 사용, 세라믹 첨가 등의 기술로 고기능성을 발현하기 위한 연구가 많이 추진되었다.

    1-1-3) 향후 전망

    습식공법에 의한 투습방수원단의 제조는, 현재에 이르러서 높은 생산단가와 낮은 생산성, 그리고 고품질의 발현에 한계를 가지므로 점점 비중이 줄어들고 있는 방식이다. 또한 많은 양의 폐수를 발생하게 됨으로써 환경오염의 가능성이 있어서 새로운 설비 투자 및 제품 개발이 거의 이루어지고 있지 않다. 향후 건식방식이나 라미네이팅 방식으로 대체될 전망이다.

    1-2) 건식 코팅

    건식 코팅은 용제나 물에 용해․분산시킨 수지, emulsion, dispersion 등을 기포에 도포하여 열에너지로 용제 또는 물을 기화시켜 연속 피막을 형성시킨다. 이 방법은 얇은 피막을 형성하는데 용이하며, 안료 및 각종 첨가물의 혼합이 용이하여 부가기능을 부여하거나 또는 다양한 코팅표면처리 가공을 할 수 있다. 대부분의 아크릴계가 이를 이용하고 PU (Polyurethane)의 건식 코팅도 약 50%를 차지한다. 건식코팅 방법을 적용하여 제조하는 투습방수소재는 다음의 친수무공형 건식코팅과 미세다공형 건식코팅 두가지 방식으로 요약할 수 있다.

    1-2-1) 친수무공형 건식코팅(HYDROPHILIC DIRECT COATING)

    일반적인 PU가 소수성, 즉 물을 흡수, 확산시키지 못하는 것에 비해 이것은 PVA (Polyvinyl alcohol) 와 PEO (Polyethylene oxide) 에서 유도된 친수성 관능기를 갖는 특수한 PU의 개발에서 시작되었다. 이 코팅 물질은 PU 분자 내에 도입된 친수성 관능기가 물을 흡수하여 점차적으로 인접한 다른 친수성 관능기로 확산시키는 원리에 의하여 투습능력을 갖게끔 설계되었다.

    수증기 분자 필름 표면 PU 분자내 친수성 관능기 (내부의 수증기 분자를 흡수, 확산과정으로 외부로 배출) 필름 내면 ( SKIN )

    그림 3. 친수무공형 투습방수원단의 투습원리

    이러한 방식은 사용된 PU의 친수성 정도와 코팅층의 두께에 의해 투습성이 결정된다. 충분한 방수 및 내수압을 보유하나 투습능력은 아직 다공질에 미치지 못한다.

    1-2-2) 미세다공형 건식 코팅(MICROPOROUS DIRECT COATING)

    PU를 용매에 녹여 건식 응고법으로 미세공극을 형성하는 방법이다. 이 방법은 OIL 성분인 유기용제와 물을 함께 사용하여 제조한 W/O형 (혹은 O/W형) 에멀젼 코팅수지를 다단 건조처리함으로써 서로 다른 끓는점을 갖는 OIL 성분과 물이 선택적으로 증발하는 과정에서 미세공극을 형성하는 것이다. 이렇게 형성된 미세공의 직경(2~20㎛)은 물방울 직경(100㎛) 보다는 대단히 작고 수증기 분자 직경(0.0004㎛) 보다는 대단히 크므로 투습방수성이 생기는 것이다.

    RESIN + TOLUENE PU BEAD WATER 물을 첨가하면서 고속혼합 

    ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● 

     O/W EMULSION화 TOL 휘발 저온 건조( 70 - 80℃)
    PU BEgcAD GEL화 WATER 증발 

    ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● 

    고온 건조(120-150℃) 다공층 형성 

     그림 4. 선택증발법에 의한 건식 다공형 피막의 형성원리 

    선택증발법에 의한 건식 다공형 투습방수원단의 생산은 비교적 최근에 도입되었으며, 기술적으로 친수무공형 건식코팅이나 기존의 습식코팅에 비해 복잡하다. 우선 사용된 폴리우레탄 수지의 개질기술이 중요하며 현재 일본과 유럽의 몇 개국 정도만 확보하고 있는 실정이다. 공정기술에 있어서도 에멀젼 수지의 균질화 및 이송 기술, 차등 열처리에 의한 다단건조 공정관리 기술 등이 필요하며, 생산설비 측면에서도 기존 생산설비 대비 2-3배 이상의 공간 확보가 필수적이어서 중소, 영세업체 중심인 국내 코팅 생산업체가 쉽게 적용하기 어려운 것이 현실이다. 그러나, 선택증발법에 의한 건식 다공형 피막은 습식공정에 의한 다공형 피막보다 더욱 미세하고 균일한 미세기공을 얻을 수 있기 때문에 방수성 및 투습성이 훨씬 우수하고 품질의 균일성도 우수하다. 또한 코팅 수지의 제조시 50% 이상 물을 사용하기 때문에 휘발성 유기용제의 발생을 줄일 수 있어서 친환경적인 요소를 가지고 있으며, 기존의 습식 및 친수무공형 방식에서는 어려웠던 폴리에스테르 원단에도 적용이 가능한 기술이다.

    1-2-3) 국내외 동향

    일본 및 국내에서는 일찍부터 습식 공법을 적용한 미세다공형 투습방수원단이 주류를 이루고 있는데 반해, 환경에 대한 규제가 강한 유럽이나 후발 국가인 대만, 중국 등을 중심으로 건식코팅방법에 의한 친수무공형 투습방수원단이 활발하게 전개되고 있다. 이것은 초기 생산설비투자가 비교적 저렴하고, 생산기술이 간단하며, 생산성이 우수하기 때문이다. 특히, 대만, 중국의 경우 그동안 저가형 무기능성 코팅원단을 주로 생산해왔으나, 90년대에 들어서면서 기능성 원단의 생산을 시작하면서 습식공법의 단계를 거치지 않고 바로 건식방법에 의한 친수무공방식을 적용하여 높은 생산성과 저가격대로 경쟁력을 갖추게 되었다. 국내에서는 1995년경부터 생산을 시작하였는데, 현재에는 양적인 면에서나 기능적인 면에서도 습식 미세다공형 투습방수 원단을 추월하고 있는 실정이다.

    선택증발법에 의한 건식 다공형 투습방수원단은 주로 유럽지역에서 많은 연구, 개발이 진행되었는데, 이는 일본 및 한국을 중심으로한 습식 미세다공형 투습방수원단에 대항하기 위한 방편이었을 수도 있다. 일본에서는 습식가공 방법이 워낙 광범위하게 진행되어서 건식 다공형 방식은 그다지 활발하지 않으며, 도레이를 비롯한 몇 개 회사가 실시하고 있는 실정이다. 이는 일본의 기후가 다습하여 이러한 방식을 적용하기에 적당하지 않기 때문이기도 하다. 반면에 대만에서는 대기업 화섬사를 중심으로 과감한 설비투자를 실시하여 활발히 생산하고 있다. 국내에는 몇몇 업체가 추진하고 있으나, 생산성 및 가격경쟁력이 저조하여 아직까지 뚜렷한 실적은 없는 실정이다.

    표 3. 건식코팅에 의한 투습방수원단


    친수 무공형과 미세다공형은 투습도 측정방식 상이함. 건식공법에의한 친수무공형 투습방수원단은 고내수압을 발현하는데 적합한 기술이다. 내수압 8,000-10,000 mmH2O 으로써, 물기둥 10m 정도의 수압을 견딜수 있는 제품이다. 최근에 투습방수소재에서 방수성능을 중요시하는 경향에 부합하여 각광을 받고 있다. 투습성도 8,000 g/㎡․24hrs 이상을 발현할 수 있으나, 친수무공형의 투습메카니즘상 의복내의 기후가 다습한 상태에서 투습능력을 발휘하기 때문에 실제 착용시 가벼운 운동상태에서는 땀을 원할히 배출하지 못할 수도 있다. 반면에 선택증발법에 의한 미세다공형 투습방수원단은 고투습성을 발현하는데 적당한 소재이다. 기존의 습식공법으로는 도달하기 어려웠던 투습도 8,000 g/㎡․24hrs 이상을 충분히 발현할 수 있다. 1-2-4) 향후전망 코팅방식에 의하여 투습방수원단을 제조하는데 있어서 투습성과 방수성이라는 상반된 기능성을 동시에 발현하기 위해서는 습식공법에 의한 미세다공형 방식이 이제껏 주요한 수단이었으나, 수지개질 기술의 발전에 더불어 건식공법으로도 충분한 기능성을 발현할 수 있게 됨에 따라 향후에는 건식법에 의한 생산이 주류가 될 것으로 예상된다. 건식코팅방식은 습식에 비해서 적은 투자 비용으로 높은 생산성과 고기능을 발현할 수 있을 뿐아니라 환경오염에 대한 부담도 줄어들기 때문이다.

    1-3) 라미네이팅법

    1-3-1) 개요

    라미네이팅은 이형지 위에 수지를 코팅하여 친수무공형 혹은 다공질 필름을 제조한 후 이를 접착제로 원단과 접합시켜서 투습방수포를 제조하는 방식이다. 접합은 Dot상 접합과 전면 접합의 두가지 방법이 있으나 고기능성(고투습, 부드러운 촉감 등)을 요하는 제품은 Dot상 접합을 주로 한다. 라미네이팅 방식의 주요한 기술은 고기능성 박막 필름을 균일하게 제조하는 것이며, 이에 따라 설비의 정밀화, 작업환경의 청정화가 요구된다. 또한 제조된 필름과 원단을 합포하는 기술은 제품 전체의 품질을 좌우하는 것으로서 접착강도, 세탁내구성, 외관상 품위, 부드러운 촉감 발현 등에 주의해야 한다. 라미네이팅 방식의 장점은 원단 본래의 촉감을 거의 해치지 않는다는 것과 고기능성(특히 고내수압)을 발현하기가 용이하다는 점이다. 그러나 생산 공정이 복잡하기 때문에 직접 코팅에 비하여 제조 원가가 비싼 단점이 있다.

    표 4. 코팅 방식에 따른 특성 비교

    1-3-2) 국내외 동향

    전세계적으로 GORETEX, SYMPATEX 등 고가의 투습방수원단은 대부분 라미네이팅 방식을 적용하고 있는데 반해, 국내에는 아직까지 생산 설비 측면이나 기술 측면에서 초입단계에 머물러 있는 실정이다.

    1-3-3) 향후 전망
    현재 투습방수원단의 제조에 있어서 가장 활발한 기술개발이 이루어지고 있는 분야가 바로 라미네이팅 방식이다. 필름제조의 원료는 폴리우레탄, 폴리에스테르, 폴리 우레탄-에스테르 공중합체 등으로 다양해 지고 필름 제조 방식또한 기존의 이형지상 코팅에 의해서 제조되던 것에 비해 BLOWING 에 의한 대량 제조 방식으로 전환되고 있다. 그리고 합포에서는 용제형 접착제를 사용하던 것을 반응형 폴리우레탄 핫멜트를 적용하여 접착 강도의 향상, 품질의 균일성 향상, 생산성 향상, 환경문제의 해결 등을 추구하고 있다. 아래 그림은 반응형 핫멜트를 이용한 라미네이팅 설비의 모식도이다.

    1. FABRIC
    2. GRAVURE ROLLER (가열가능)
    3. COUNTER ROLLER
    4. HOT MELT CHAMBER (가열가능)
    5. 기능성 FILM
    6. IR HEATER
    7. 합포 ROLLER 그림 5. 핫멜트 방식에 의한 라미네이팅 모식도 중국, 대만 등 후발 국가들에 대해서 국내의 투습방수원단이 경쟁력을 갖기 위해서는 라미네이팅 방식에 대한 적극적인 투자와 기술개발이 필요하다.

    1-4 세부기술별 장단점 비교

    1-4-1) 가공방법별 기능성 피막의 특징

    ① 습식코팅(미세다공형) ② 건식 코팅 (미세다공형) ③ 건식코팅(친수무공형) ④ 라미네이팅(친수무공형)

    그림 6. 각 제조 방법별 피막의 특징 ( 주사전자 현미경 ) 코팅방식에 따른 기능성 피막의 특징을 그림에 나타내었다. 습식공법에의한 미세다공형의 경우 경방향으로 직경 10 - 30 ㎛정도의 원통형 기공이 형성되기 때문에 볼륨감이 풍부하고 투습성이 양호한 피막을 얻을 수 있다. 그러나 비교적 기공의 피막이 크고 방수성능을 좌우하는 극미세기공은 필름 표면에 밀집해 있기 때문에 마찰이나 세탁에의해 표면이 손상될 경우 방수성이 급격히 저하되는 우려가 있디. 반면에 건식공법에 의한 미세다공형은 기공의 크기가 1 - 10 ㎛ 정도로 작으며 전부분에 걸쳐 균일하게 분포되기 때문에 안정적으로 높은 방수성을 발휘할 수 있으며 세탁이나 마찰에대한 내구성이 우수하다. 그러나 피막의 겉보기 밀도가 높기 때문에 볼륨감은 습식에 비해 다소 떨어진다.

    표 6. 건식다공형과 습식다공형의 피막 물성 비교

    친수무공형 피막의 경우 치밀한 필름을 형성하기 때문에 높은 방수성을 발현할 수 있으며, 얇은 피막으로 제조가 가능하므로 박지원단에 적용했을 경우에도 소프트하고 경량감 있는 촉감을 보유한다. 특히 라미네이팅 방식으로 제조될 경우에는 8~10 ㎛의 극박막필름을 사용하기 때문에 원단 본래의 촉감을 해치지 않으면서 10,000 mmH2O 이상의 높은 방수성능을 얻을 수 있다.

    1-4-2) 습식코팅과 건식코팅의 제조공정 비교

    건식과 습식 코팅 방법의 제조 공정과 특징을 비교한 것을 다음 표에 정리하였다.

    표 7. 건식코팅과 습식코팅의 특징 비교

    건 식 코 팅 습 식 코 팅 품 질 ․촉감의 변화가 작다. ․기공의 크기 조정에 한도가 있다. ( 미세다공형의 경우 ) ․기능성 첨가제 등 응용 가능하다. ․봉제성이 양호하다. ․유지류에 의한 열화가 있다. ․코팅 표면의 미끌림성이 좋다. ․촉감 변화가 심하다. ․기공의 크기 조정이 가능하다. ․첨가제의 응용에 한계가 있다. ․세탁내구성이 좋지 않다. ․코팅 표면의 미끌림성이 좋지 않다. 설 비 ․나이프코터, 건조장치 ․콤마코터, 응고조, 수세조, 건조장치 생산성 ․필름층 두께 조정이 용이하다. ․생산속도 10-30 m/min ․수지 가격이 비싸다. ($5.0 - 8.0/kg ) ․필름층 두께 조정이 어렵다. ․생산속도 10 - 20 m/min ․수지 가격이 싸다. ($2.0 - 5.0/kg )

    습식코팅에 비해 건식코팅의 최대 장점은 생산설비가 간단하고 생산성이 우수하다는 것이다. 건식코팅은 최근까지 저가, 저기능성의 일반코팅제품을 주로 생산해 왔으나, 고기능성 원료수지의 개발이 진행됨에 따라 점차 기능성 제품도 생산할 수 있게 되었다. 이에 따라 그동안 습식가공설비를 구비한 몇몇 대형 업체에서만 제조되던 투습방수원단이 중소형 가공업체에서도 제조가능하여 시장이 확대되고 기술개발이 가속화되고 있다. 향후 환경규제가 강화됨에 따라 코팅가공산업에 있어서도 청정화 기술이 요구되어지는데, 습식코팅의 경우 용제의 회수외에 마땅한 방안이 없는 것에 비해 건식코팅은 수용성(수분산성)수지의 적용이 용이하여 앞으로 더욱 경쟁력을 확보할 것으로 전망된다.

    1-5) 투습방수원단의 수급동향

    코팅, 라미네이팅 투습방수 소재의 생산량을 정확히 파악하는것은 어렵다. 시장에서는 투습성이 없는 각종 방수포도 광범히 사용되고 있고, 합섬업체나 가공업체 또한 투습방수원단 외에 일반 방수포도 생산, 판매하고 있기 때문에 투습방수원단 별도의 생산량을 파악하기는 어렵다. 그러나 전반적으로 전세계 지역별 생산규모를 살펴보면 표 6.과 같다. 표 8. 세계 코팅 및 라미네이팅 원단의 지역별 생산 비율

    97년에는 유럽과 미국의 전체 매출이 대략 6,000만m이며 이를 금액으로 따지면 약 65,000만$이다. 투습방수직물 시장은 90년대 들어 급성장을 해오고 있는데 연간 성장률은 8~10% 정도이다. 이 시장을 구분하면 라미네이팅 직물이 52%, 코팅제품은 48%이다. 유럽시장에서는 코팅제품이 55% 이상을 차지하며 미국시장에서는 라미네이팅 직물이 65% 이상을 차지한다.

    표 9. 일본의 투습방수원단 생산량 변화 추이 (단위, 만 m)

    일본의 경우 최근 한국 및 중국, 대만의 성장에 따라 전체 생산량이 다소 감소하는 추세이다. 특히, 중․저기능성 제품의 생산이 급감하였고, 이에 따라 고기능 제품과 범용제품으로 양분되는 상황이다. 국내의 투습방수소재 생산현황을 정확히 파악하기는 매우 어려우나, 최근 10년간 급속한 성장을 이루어서 양적으로는 일본과 대등한 수준에 도달한 것으로 추정된다. 제조방법에 있어서는 과거 습식코팅이 주종이었으나, 근래에 들어 건식, 라미네이팅 방식에 의한 투습방수소재가 증가하고 있는 추세이다. 그러나, 일본과 마찬가지로 중국, 대만 등의 거센 도전으로 상당부분 시장을 잠식당하고 있는 실정이다. 국내의 주요 코팅 생산업체의 연간 생산능력을 살펴보면 아래표와 같다. 표 10. 국내 주요 코팅 생산업체별 연간 Capa. 현황

    2-2) 특허 동향 분석 내용

    2-2-1) 특허출원 동향

    2-2-1-1) 연도별 출원동향

    전반적으로 다른 세부기술분야에 비해 출원건수가 그렇게 많지 않으며, 한국의 경우는 1997년까지 총 57건중 최근 5년간 33건으로 약 58%가 최근 5년간 출원되었다. 이에 반해 일본은 1997년까지 총 28건중 최근 5년간이 9건으로 약32%가 최근 출원부분으로 한국에 비해서는 활발하지 않지만 지속적으로 연구되고 있음을 알 수 있다. 또한 일본은 1988년부터 1995년까지 연구활동을 보인다. 본 정량분석에서는 한국과 일본을 위주로 분석코자 한다.

    2-2-2) 연도별/기술분류별 특허 출원 동향

    (1) 한국

    상기 그래프는 한국에 출원된 특허를 IPC 분류로 나누어 연도별로 나타낸 것으로, 1997년까지 전체 IPC 출현건수는 71건으로 D06M(섬유제품 처리)이 37건(52%), D06N은 26건(37%), B32B(적층체 구조), D04H, D06C, D06P는 각각 2건(3%)으로 D06M(섬유제품 처리) 분야가 가장 많았다.

    5년간(1993년~1997년) 동향을 보면 전체 건수가 35건으로 이 시기의 집중도가 1997년까지의 전체 건수중 약 54%를 차지하여 절반 이상이 이 시기에 출원되었으며, 그 중에서도 D06M(섬유제품 처리), D06N(고분자 피복 섬유웹) 분야는 5년간 집중도가 50% 정도였다. 특히 B32B(적층체 구조), D04H(섬유 및 필라멘트에서 직물제조) 및 D06C 분야의 경우는 모두 1993년 이후에 나타나기 시작한 분류라는 점이 특이할 만하다. 주로 D06분야(D06M(섬유제품 처리), D06N, D06C, D06P)가 최근 5년간에도 주류를 이루고 있다고 할 수 있다. 결론적으로 한국의 경우는 주로 D06M(섬유제품 처리)(섬유에 의해 제조된 섬유제품) 분야와 D06N(피복된 섬유웹) 분야가 주를 이루어 일본과는 달리 섬유 및 필라멘트 자체를 제조하는 분야(D01F)는 거의 없고, 직물의 가공 기술이 거의 대분분이라는 특징이 있다.

    (2) 일본
    일본의 경우는 1997년까지 전체 IPC 출현건수가 74건이고, 최근 5년간의 총건수가 24건으로 약32%의 5년간집중도를 보여 꾸준히 연구되고 있는 분야임을 알 수 있다. IPC 구성을 살펴보면 1997년까지 D01F(섬유 및 필라멘트의 화학적 제조)가 35건(47%), D01D(기계적 방법에 의한 인조필라멘트 및 섬유 제조)가 14건(19%), D04H(섬유 및 필라멘트에서 직물제조)가 10건(14%) 순으로 D01F(섬유 및 필라멘트의 화학적 제조)가 월등히 많았다. 그러나 5년간의 IPC 구성을 살펴보면, 건수로는 D04H(섬유 및 필라멘트에서 직물제조) 10건(42%), D01F(섬유 및 필라멘트의 화학적 제조) 6건(25%), D01D(기계적 방법에 의한 인조필라멘트 및 섬유 제조) 3건(13%) 순으로 D04H(섬유 및 필라멘트에서 직물제조) 분야가 매우 높은 비중을 나타낼 뿐만 아니라 전체 10건 모두가 1993년 이후 건수로 최근 연구가 활발한 것으로 나타났다.

    2-2-3) 특허 기술 동향

    (1) 습식코팅 투습방수소재

    표 11. 특허의 기술분야

    ==> 분석요지 ; 90년대 들어서 습식코팅의 주요한 기술적 관심사항은 기능성의 향상과 코팅층의 촉감을 개선하려는 것이었다. 그래서 특허상으로는 습식 수지의 개질에 대한 내용이 많으며 무기 입자를 첨가하여 코팅층내에 극미세한 기공을 형성시켜서 투습기능성을 향상하며 더불어 무기입자에 의하여 코팅표면에 미세한 요철이 형성됨으로써 표면 촉감 및 내마찰성능을 향상시키려는 기술개발이 많이 소개되고 있다.

    표 12. 출원인별 주요 특허의 기술내용

    요지 습 식 (주)유니티카 JP 特開平5- 78984 평균 입경이 0.1㎛ 이하의 미분말을 1% 이상 함유한 폴리우레탄 수지 용액을 원단에 습식코팅법으로 코팅하여 7,000g/m2/24hrs 이상의 투습도와 0.6kg/cm2 이상의 내수압을 가진 투방포 원단을 특징으로 함.

    JP 特開平8- 13352 폴리우레탄수지를 원단에 코팅하여 공극율이 40% 이상의 有孔수지층이 있고, 그 수지내에는 1.5㎛이하의 소취성을 가진 미분말이 1~40중량% 함유된 소취성 투습방수코팅원단을 특징으로 함.

    JP 公開平2- 47058 친수화된 폴리아미노산계 우레탄과 폴리우레탄의 혼합비가 10:0에서 2:8이며 이소시아네이트계 화합물, 소수성 유기용제, 친수성 유기용제 및 물로 제조된 수지를 시트상에 도포 건조한 후 폴리우레탄계 접착제로 라미네이트 한 것을 특징으로 함.

    (2) 건식 투습방수소재

    표 13. 특허의 기술분야

    표 14. 출원인별 주요 특허의 기술 내용 분 류 출원인 특 허 번 호 요 지 건 식 (주)유니티카 JP 特開平4-249142 제전성 섬유로 만든 원단면에 미세다공질피막을 형성한 코팅을 하며, 그 수지의 내층에는 소취성을 지닌 물질이 함유되어 있음. 코팅막의 공극율이 20~70%인 소취제전성 투습방수원단을 그 특징으로 함.

    JP 公開平4-146275 섬유표면에 불소변성 폴리우레탄 수지로된 다공질 투습막을 형성시키고 여기에 에멀젼계 폴리우레탄 수지중합체로 다공질 투습막을 형성시키는 것을 특징으로 하는 방수성능이 우수한 투습방수원단.

    JP 公開平4 - 4139 섬유상에 적어도 한면에 미다공질 수지피막을 형성시킨 투습방수포에 있어서 피막중에 소취성 및 방염성을 가지는 물질을 함유하며 피막에 기공율이 20~70%의 범위에 있는 것을 특징으로 하는 소취방염성 투습방수원단.

    JP 公開平7-145570 폴리에스테르계 원단표면에 폴리우레탄 수지중합체의 에멀젼 용액을 도포하여 건식코팅법에 의해 유공의 수지층을 형성시키며 이 용액중에 폴리에스테르계 수지를 0.5~10중량% 함유하는 것을 특징으로 하는 투습방수원단의 제조 방법.

    (주)선경 인더스트리 JP 特開平7-258971 폴리에스테르계 섬유가 주성분으로 사용된 염색편직물의 코팅가공에 있어서 코팅수지 조성물에 비환원성 말토올리고당에 환상화합물을 사용하는 것을 특징으로 하는 폴리에스테르계 직편물의 코팅가공방법.

    ==> 분석요지 일본의 경우 유럽이나, 미주지역, 중국 등지에 비해 건식코팅에 의한 투습방수 원단의 제조가 활발하지 않은 경향을 보인다. 이것은 습식공법이 워낙 광범위하게 사용되고, 기술 또한 많이 개발되어있기 때문이기도 하지만 일본 특유의 다습한 기후 때문에 건식코팅보다는 습식코팅이 유리한 측면도 있다. 특허상에서 건식코팅의 주요한 관심사항은 원료 수지의 개질과 더불어 소취소재, 방염물질, 촉감개선 물질, 무기입자 등을 첨가하여 여러 가지 부가기능을 부여하려는 것이다. 이는 건식코팅방식이 제조 공정중에 첨가제 등을 부여하기가 용이하며, 일본에서는 습식코팅을 한 후 건식코팅으로 표면처리하여 여러 가지 다양한 촉감 및 기능성을 부여하는 것이 널리 사용되고 있기 때문이다.

    (3) 라미네이팅 투습방수 소재
    표 15. 특허의 기술분야

    표 16. 출원인별 주요 특허의 기술내용 분 류 출원인 특 허 번 호 요 지 라미 네이팅 (주)유니티카 JP 特開平5-124144 폴리에틸렌 다공질 필름과 열접착성 섬유로 된 부직포를 열과 압력으로 접합시킨 것을 특징으로 하는 투습방수시트.

    JP 公開平3-213581 L-lysine과 유기산의 반응물로 된 분말을 0.1% 이상 함유하는 폴리아미노산계 폴리우레탄으로 제조된 투습필름을 원단에 라미네이트한 것을 특징으로 하는 내마모성이 우수한 투습방수원단.

    JP 公開平2- 47058 친수화된 폴리아미노산계 우레탄과 폴리우레탄의 혼합비가 10:0에서 2:8이며 이소시아네이트계 화합물, 소수성 유기용제, 친수성 유기용제 및 물로 제조된 수지를 시트상에 도포 건조한 후 폴리우레탄계 접착제로 라미네이트 한 것을 특징으로 함.

    ==> 분석요지 라미네이팅 방식 투습방수원단의 특허에서는 투습성을 향상시키기 위해서 폴리 아미노산계 폴리우레탄을 사용하는 기술이 많으며, 기존의 용제형 접착제를 사용하는 방식에서 핫멜트를 이용하거나 열접착을 응용하여 접착력을 향상시키려는 기술이 소개되고 있다.

    3) 제품 개발 동향 및 전망

    투습방수 원단의 기능성은 시대의 흐름에 따라 다양하게 발전해 왔다. 개발 초기에는 주로 내수압, 투습도 등의 기본 기능을 향상시키려는 노력이 강조 되었고, 이후 보온성, 신축성 등의 신기능을 부가하는 방향이었으나 80년대 후반부터 90년대 중반까지는 기능을 추구함과 동시에 감성에 대한 요구가 강해졌다. 이때 기능면에서는 코팅피막층의 결로억제가 중요한 과제가 되어 천연 고분자 원료를 응용한 흡방수성 부여 기술이 개발 되었으며, 태양광선을 조사했을 때 축열․방열 할 수 있는 세라믹 응용기술도 도입되었다.

    90년대 중반 이후 현재에 이르기까지는 기능성의 고도화 경쟁이 줄어들고 대신 생산원가 대책이 강조되어 사용목적에 부합하는 제품을 적재적소에 사용하고, 원가 상승을 초래하는 과도한 기능성 부여는 억제되었다. 또한 고투습성을 유지하면서도 내수압 향상을 꾀하고, 세탁에 의한 내수압의 저하를 방지하거나 noiseless, 박리강도 강화, 피막의 극박막화에 의한 촉감 개선 등 기능소재에 있어서의 기본 성능 및 착용 쾌적성을 향상시키는 것이 중요한 개발 테마가 되었다.

    이를 위한 투습방수소재의 개발 과제는 광범위한데 이를 정리하면 다음과 같다. - 내수압의 고도화 - 투습성의 고도화 (흡방습성, 결로억제등 포함) - 기능의 복합화 (신축성, 보온성, 항균방취성, 소취성, 난연성 등) - 막 박리강도의 향상 - 세탁내구성의 향상 (내수압의 저하방지) - 소프트성, 유연성 등의 촉감 개선 - 착용시의 잡음 방지 (noiseless) - 내 누수성의 향상 (내유성, 내약품성, 내해수성 등) - 폴리에스테르 원단코팅에서 이행승화방지

    3-1) 고내수압형 투습방수 소재

    투습방수 소재는 다양한 개념을 기본으로 발전되어 왔으나 현재도 가장 큰 문제는 내수압의 향상이다. 내수압의 향상은 투습성과의 균형이 중요하여 고투습성을 유지하면서 내수압을 향상시키는 방향으로 변해가고 있다. 고내수압의 기준은 없지만 대체로 5,000 mmH2O 이상을 기준으로 한다. 내수압 측면에서는 다공형 피막보다는 무공형 피막이 유리하고, 코팅방식 보다는 라미네이팅 방식이 주효하다. 무공질 필름을 라미네이팅 할 경우 10,000 ~ 20,000 mmH2O 정도의 내수압을 발현할 수 있다.최근에는 두 기능이 모두 높은 수준까지 가능해졌는데 다공질층 위에 다공질이나 무공질을 형성시킨 복층피막 구조를 적용하거나, 라미네이팅의 경우는 고투습성을 유지하기 위해 필름의 두께를 10㎛ 이하로 하는 기술이 발전했다.

    3-2) 고투습형 투습방수 소재

    고투습성은 통상 6,000 g/㎡․24hrs 이상의 투습도를 갖는 제품을 말한다. 투습성을 향상시키기 위해서는 피막층을 얇게 하거나 피막의 공극(空孔)율을 높게 하는게 좋지만 내수압이 저하된다. 이를 위해 친수성 수지로 복층구조 피막으로 하거나 천연 고분자 원료를 응용하는 경우가 많다. 투습성이 높아지면 결로억제 효과도 높아지나 결로의 발생이 완전히 방지되는 것은 아니다. 단시간에 급격히 운동하는 경우나 의복내 온도와 외기온도의 차이가 큰 경우 고투습성이 있어도 결로가 발생할 수 있다. 고투습성이라는 것은 의복내 습도를 낮게 하여 착용 쾌적성을 향상시키는 것이 목적이고, 결로억제는 고투습성 외에도 흡수성, 흡습성 등이 필요하다.

    중노동시의 발한량은 20℃에서 약 2,880 g/㎡․24hrs 이므로 의복의 투습도가 3,000g/㎡․24hrs 정도면 충분하다고 말할 수 있으나, 외기온도가 고온일 경우나 일시적으로 다량의 발한을 일으키는 경우도 있기 때문에 투습성이 이보다 높아야 좋다. 사람이 쾌적감을 느끼는 피부 근처의 습도는 50±10% RH이다. 운동 직후라 하더라도 이 습도가 유지되도록 의복의 소재를 설계하는 것이 필요하다.인체의 쾌적성을 극대화시키기 위해서 최근에는 주위환경에 따라 분자쇄의 운동상태가 달라지는 형상기억폴리머를 이용한 투습방수 원단의 개발도 진행되고 있다. 이것은 주변의 기후가 고온 다습할 경우에는 분자쇄의 운동이 활발해져서 적극적으로 땀을 배출하여 의복내를 쾌적하게 유지하도록 하고 반대로 주변의 기후가 저온건조할 경우에는 분자쇄의 운동이 억제되어 의복내의 땀을 배출하지 못하도록 하여 체온의 손실을 막아주는 원리를 응용한 제품이다.

    3-3) 천연 고분자 원료 응용 제품

    투습방수 소재에는 천연 고분자를 응용한 제품이 많다. 천연 고분자에는 콜라겐, 키틴, 알부민, 울, 실크 등의 동물계, 혹은 아미노산, 셀룰로즈, 펄프 등의 식물계가 이용된다. 통상으로는 이것들을 10㎛ 이하로 미세 분말화시켜 수지에 혼입하여 코팅한다. 천연 고분자 원료를 혼입한 피막은 고투습성, 흡수성, 흡방습성, 결로 억제 효과도 발현된다. 또한 피막 표면에 미세한 요철이 형성되어 부드러운 촉감을 얻을 수 있다. 코팅 피막은 후도가 10㎛ 이하가 되는 경우가 있기 때문에 직경이 큰 분말은 적절치 않기 때문에 천연고분자 물질의 미세화 기술 중요하다.

    천연 고분자 원료는 흡수성, 흡습성, 흡방출성을 부여하기에 적당하지만 흡수성, 흡습성이 높으면 반대로 습윤감이 생기고 세탁시의 문제가 발생한다. 또한 천연 고분자 원료의 가격이 높기 때문에 최종적으로 투습방수원단의 원가에 영향을 준다. 그래서 최근에는 응용 분야가 축소되고 있다.

    3-4) 세라믹 응용 제품

    무기물을 이용한 투습방수 소재는 알루미늄, 카본블랙, 세라믹 등을 이용한 보온성 타입과 소취성, 향균 방취성을 부가한 것도 있다. 보온성 타입 등은 현재도 일부 사용되고 있으나 전체적으로 기능의 복합화나 다양화를 목적으로 하는 무기물의 사용은 감소하고 있다.

    3-5) 폴리에스테르의 이행승화 방지

    폴리에스테르 원단 코팅의 이행승화 문제는 오래전부터 제시되어 다양한 기술이 개발되었지만 아직까지 완전히 해결된 것은 없다. 폴리에스테르는 일반적으로 분산염료로 염색하고, 이 염료는 승화성이 있기 때문에 다림질 등의 열에 의해 이행 오염을 일으킨다. 원단 자체일 경우 승화성이 적은 염료를 사용하면 거의 해결되지만 코팅가공 원단은 이행승화성이 작은 폴리에스테르 원단을 사용해도 코팅면을 매개로 분산염료가 이행 오염을 일으킨다. 코팅가공 원단의 이행 오염을 방지하는 방법으로 여러 가지가 제안되어 왔으며 중요한 기술은 다음과 같다.

    ① 섬유 표면에 분산 염료의 이행 방지막을 형성한다. 멜라민 등의 분산염료와 친화성이 없는 친수성 수지막을 형성하는 기술이다. 이는 코팅전에 별도의 공정이 필요하므로 원가가 높아지고 촉감이 나빠질 수 있다.

    ② 코팅 수지중에 분산 염료의 이행을 억제하는 첨가제를 배합한다. 수지내에 금속 입자나 염료와 상용성이 나쁜 물질을 첨가하는 방법으로 효과가 미약하다.

    ③ 코팅 수지중에 분산 염료를 흡착하는 염료 포접제를 배합한다. 염료의 분자 크기와 유사한 미세 다공을 갖는 미립자를 배합하여 이행하는 염료를 흡착, 탈착되지 못하도록 하는 방법이나 습식 코팅에는 적절하지 못않다.

    ④ 코팅 수지중에 분산 염료를 무색화하는 소색제( 유기 과산화물)를 배합한다.

    이외에도 마이크로 웨이브, 저온 플라즈마, 자외선 등의 활성화 에너지를 조사하는 방법도 있다.

    다. 종합분석

    1) 국내외 기술동향

    1970년대 말 처음 도입된 이래 20여년간 투습방수원단은 다양한 기술개발과정을 거쳐서 현재에는 기술의 성숙기에 들어서고 있다. 그동안 추진되어왔던 기능성의 고도화 경쟁은 습식코팅, 건식다공형 코팅, 친수무공형 건식코팅, 라미네이팅 등을 거치면서 심화되어 왔다. 국내의 경우 그동안 습식코팅이 대부분을 차지하고 있었으나 점차적으로 건식코팅, 라미네이팅 방식으로 전환되어 가는 경향이다. 또한, 현재의 투습방수원단 시장은 필요한 용도에 맞는 적절한 기능성을 적절한 가격대에 공급하는 경제원리가 더욱 강조되면서 제품의 성능을 높이는 기술보다는 낮은 원가로 균일한 품질을 발현할 수 있도록 생산 시스템을 재정비하는 노력이 중요해졌다.

    2) 특허동향

    특허상에 나타나는 기술적 흐름으로는 우선 습식코팅, 건식코팅, 라미네이팅 방식 모두 주요 원료물질인 폴리우레탄의 개질 기술과 무기물, 천연물질의 첨가 기술이 많이 소개되고 있다. 이것은 기능성을 고도화 시키면서 코팅층의 표면 촉감을 개선하여 보다 감성적인 소재를 추구하는 경향을 보여준다. 그리고 피막층의 복합화, 예를 들면 습식코팅층에 건식피막을 형성하거나, 습식 필름을 라미네이팅 시키는 등으로 각 제조공정의 장점을 고루 취하고자 하는 의도로 해석된다.

    3) 향후전망

    3-1) 기술적 분야

    생활수준이 향상됨에 따라 소비자의 기능성 직물에 대한 관심과 지식이 높아지면서 보다 쾌적한 직물 소재를 요구하게 되어 한층 복합화된 기능 발현 뿐만 아니라 감성적인 측면까지 충족된 투습방수소재의 개발 요구는 향후에도 지속될 전망이다. 그리고 노령인구가 증가하면서 건강에 대한 관심이 커짐에 따라 항균기능, 소취기능, 방향기능 등 다양한 건강 관련 기능성의 부여가 필요해 지게 되었다.

    기능성의 발전요구와 더불어 생산공정에서의 환경 문제가 커다란 과제로 남아있다. 그동안 투습방수 소재를 생산하는 공정은 건식코팅의 경우 많은 양의 휘발성 유기용제를 사용, 방출하는 문제점이 있었고, 습식코팅에서는 수질 오염의 위험성이 있었다. 이러한 문제는 폐수 처리 설비 및 회수장치의 구비, 휘발용제의 집진 장치 등을 통하여 어느정도 줄일 수 있으나 최근에 이르러서는 보다 근본적인 대책이 요구되어진다. 이에 대하여 수용성 PU 원료나 100% 고형분 수지를 적용한 투습방수 소재의 개발이 활발히 진행되고 있고, 생산공정에서도 유해 물질을 방출하지 않는 핫멜트 라미네이팅 등의 기술이 개발 적용되고 있다. 환경보전에 대한 관심이 증가해 감에 따라 환경오염 유발 산업에 대한 규제는 갈수록 강화될 전망이므로 다른 산업과 마찬가지로 투습방수소재의 미래는 이 문제를 어떻게 해결하는냐에 달려있다고 해도 과언이 아니다.

    3-2) 사업적 분야

    투습방수 소재는 미국의 고어텍스, 유럽의 심파텍스가 고기능 고가 시장을 양분하고 있고 일본의 습식코팅 및 라미네이팅 제품이 중고가 시장을 리드하고 있는 상황에서 한국은 중저가 제품을 중심으로 시장을 형성하고 있다. 그러나 최근 중국, 대만, 동남아시아 지역의 업체들이 저가, 대량 생산을 통하여 한국이 그동안 형성하고 있던 시장을 위협함에 따라 국내 제품의 경쟁력이 점차 감소하고 있는 실정이다. 향후 시장에서 살아남기 위해서는 기존의 OEM 방식의 생산에서 탈피하여 독자적인 상품 브랜드를 구축하고 중고가 시장으로 진입하도록 노력하여야 하며, 품질의 안정화, 고급화를 위하여 생산설비를 재정비하고, 후발 국가의 추격을 떨치기 위해서 위에서 제시한 미래형 기술의 적극적인 도입을 추진해야 한다.

    4) 개발과제과제 환경친화형 투습방수원단의 제조방법

    (주요개발 내용) 1. 수용성 (수분산성 ) 기능성 폴리우레탄의 개발 : 수지 MAKER 와 공동 2. 수성 원료의 효율적 건조 설비 개발 : 초음파 건조설비 개발 3. 수성 폴리우레탄의 가공기술 개발효과

    ◎ 수출효과 : 1,000만$ / 년 ( 200만yds/년 ) ◎ 기술파급효과 : 청정가공 기술의 선도적 지위 획득 대표적 환경오염산업인 염가공 산업을 청정산업화

    'Textile_auxiliary' 카테고리의 다른 글

    Decolorization of Coloring Wastewater by Magnetic Separation  (0) 2014.12.13
    Resist Printing  (0) 2014.12.10
    Replace Rosin Esters  (0) 2014.07.25
    HANTEX A-160  (0) 2014.06.18
    Methyl Methacrylate의 현탁중합법  (0) 2014.06.09
    Posted by 겨울소나기
    Replace Rosin Esters by Terpene Phenolic Resins and improve the performance of your Hotmelt Adhesives formulation
     
    • Tackifying Resin: Terpene Phenolic Resin
    • Applications: Hotmelt Adhesives for Packaging, Tapes & Labels, Bookbinding; General Assembly Hotmelt

    Key Benefits

    • Stable Cost
    • Improved adhesion on difficult substrates
    • Compatibility with various elastomers

    Your Challenge

    Price variations of Gum Rosin Esters have a strong impact on the cost of your Adhesive Formulation. However, you cannot afford to supply formulations with such fluctuating prices. As a Hotmelt Adhesive Formulator, you are looking for a reliable solution that would help you improve the performance of your formulation.

    Your Solution

    This Terpene Phenolic Resin as naturally-based tackifier is the perfect solution for formulators who want to improve the adhesion of their formulation on difficult substrates.

    It has an excellent compatibility with a wide range of elastomers and can also help you stabilize the cost of your formulation thanks to steady and reliable prices.

    Adhesion on difficult substrates & compatibility with various elastomers

    This Terpene Phenolic Resin shows an excellent adhesion on difficult substrates, and is compatible with various elastomers.

    The table below compares the MMAP value and molecular weight of the Terpene Phenolic Resin vs benchmark Rosin Esters.

     Terpene Phenolic ResinBenchmark Rosin EsterAdvantages of
    Terpene Phenolic Resin
    MMAP (aliphatic / aromatic character
    of the resin)
    +25+3 Improved compatibility in
    PSA Hotmelt Formulations
    Mn (molecular weight)5001000Better adhesion on
    difficult substrates
    Table 1: Properties of Tackifier Resins

    It clearly shows that the MMAP value is higher for this Terpene Phenolic Resin, which means that it is more aliphatic than benchmark Rosin Ester, for an improved compatibility in Hotmelt Adhesives Formulations.

    Moreover, the Terpene Phenolic Resin also has a lower molecular weight, for a better adhesion on difficul

    The table below illustrates the excellent compatibility of the Terpene Phenolic Resin with a wide range of elastomers:

    CompatibilityTerpene Phenolic ResinBenchmark Rosin Ester
    SIS
    SBS
    SEBS
    PE Metallocene
    VAE
    Acrylics






    Table 2: Compatibility of Tackifier Resins with various elastomers

    This material can be suitable for almost all your Hotmelt Adhesive formulations, whatever the elastomer, and help you to reduce sourcing problems.

    No residual acidity

    Last but not least, this Terpene Phenolic Resin is a neutral resin, which shows no residual acidity compared to rosin esters:
     Terpene Phenolic ResinBenchmark Rosin Ester
    Acid Value020 max








    'Textile_auxiliary' 카테고리의 다른 글

    Resist Printing  (0) 2014.12.10
    투습방수가공  (0) 2014.07.30
    HANTEX A-160  (0) 2014.06.18
    Methyl Methacrylate의 현탁중합법  (0) 2014.06.09
    실란계 사슬 이동제를 사용한 아크릴 바인더의 제조  (0) 2014.06.09
    Posted by 겨울소나기

    HANTEX A-160

    HANTEX A-160

    complete substitution of PTF

    A-160 is a high quality paint thickener, high concentration of the thickener, water and a dispersion stabilizer Chi, fast and thickened lubricating coating designed for textile printing process.

    Chemical Composition:

    acrylic polymer dispersion

    Nature:

    • Ionic: anionic
    • Physical Form: White pourable dispersion
    • pH of the system (by non-1%): Approximately 6.0
    • towers Volume: > 60%
    • Viscosity(CPS): <3000cps
    • gravity: 1.05~ 1.10

    Features:

    Excellent color yield and vividness, printing effect, duck outline clear, impermeability of high thickening effect, can quickly adjust the rheology and viscosity of the printing paste, printing paste can be added directly to the soft, very easy to use, does not contain a wake, non-APEO, comply with Oeko-Tex l00

    Application:

    Reserve pulp preparation before adding water, high genetic mixing, slowly add paint thickener PTF, stir into a smooth, no lumps of paste. Another time a large number of high shear mixing will heat may result in decreased viscosity.

    • Water: 98.2kg
    • A-160: 1.8kg
    • Total: 100 kg
    Direct added:

    As the paint thickener PTF has excellent hydrating properties, increasing towers quickly, so can be "directly into the Law" to adjust the slurry viscosity requirements depending on the machine, the proposed amount of about 1.5-2% Chi.

    Storage:

    A-160 should be stored in the original containers, or other glass, stainless steel, plastic or container with epoxy in the village.

    Packing:

    plastic bucket packaging 50/125kg

    Posted by 겨울소나기